A multi-scale formulation for compressible turbulent flows suitable for general variational discretization techniques
Based on the recently introduced variational multi-scale (VMS) approach to large-eddy simulation (LES) as introduced in [T.J.R. Hughes, L. Mazzei, K.E. Jansen, Large eddy simulation and the variational multiscale method, Comput. Visual. Sci. 3 (2001) 47–59; S.S. Collis, Monitoring unresolved scales...
Gespeichert in:
Veröffentlicht in: | Computer methods in applied mechanics and engineering 2007-05, Vol.196 (29), p.2863-2875 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2875 |
---|---|
container_issue | 29 |
container_start_page | 2863 |
container_title | Computer methods in applied mechanics and engineering |
container_volume | 196 |
creator | van der Bos, Fedderik van der Vegt, Jaap J.W. Geurts, Bernard J. |
description | Based on the recently introduced variational multi-scale (VMS) approach to large-eddy simulation (LES) as introduced in [T.J.R. Hughes, L. Mazzei, K.E. Jansen, Large eddy simulation and the variational multiscale method, Comput. Visual. Sci. 3 (2001) 47–59; S.S. Collis, Monitoring unresolved scales in multiscale turbulence modeling, Phys. Fluids 13 (6) (2001) 1800–1806], we present a VMS formulation which can be used in the simulation of compressible flows. Special attention is given to obtain a VMS formulation which is suitable for complex flow domains and general variational discretization techniques. A generalization of the Favre-averaging procedure is introduced such that the formulation resembles the Favre-filtered Navier–Stokes equations traditionally used in LES of compressible flow, and no explicit subgrid terms arise in the continuity equation. Also, we show that with the use of discretization methods other than Fourier-spectral methods the VMS-projection no longer commutes with differentiation. This results in additional subgrid scale terms which resemble the commutator error as encountered in the traditional filtering approach to LES. |
doi_str_mv | 10.1016/j.cma.2006.12.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29842893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782507000710</els_id><sourcerecordid>29842893</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-59e57d2718b11a34f24323249f8d74d3b4ece35676a15c463cdf0a2b625c41253</originalsourceid><addsrcrecordid>eNp9kEtPxSAQhYnRxOvjB7jrRnetDNCWxpW58ZXcxI2uCaVT5aaPK1CN_nqpNXEnG2bCOWeGj5AzoBlQKC63mel1xigtMmAZpfkeWYEsq5QBl_tkRanI01Ky_JAceb-l8UhgKzJdJ_3UBZt6oztM2tHFVgc7DnOdmLHfOfTe1vExTK6eOhxC0nbjh0_8ZIOuF1fyggM63SXv2tkff6wb643DYL-WwIDmdbBvE_oTctDqzuPp731Mnm9vntb36ebx7mF9vUmNoBDSvMK8bFgJsgbQXLRMcMaZqFrZlKLhtUCDPC_KQkNuRMFN01LN6oLFDljOj8nFkrtz4zw3qD6uhF2nBxwnr1glBZMVj0JYhMaN3jts1c7ZXrtPBVTNgNVWRcBqBqyAqQg4es5_w_UMr3V6MNb_GWVZlBKKqLtadBh_-m7RKW8sDgYb69AE1Yz2nynfWnGS2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29842893</pqid></control><display><type>article</type><title>A multi-scale formulation for compressible turbulent flows suitable for general variational discretization techniques</title><source>Elsevier ScienceDirect Journals</source><creator>van der Bos, Fedderik ; van der Vegt, Jaap J.W. ; Geurts, Bernard J.</creator><creatorcontrib>van der Bos, Fedderik ; van der Vegt, Jaap J.W. ; Geurts, Bernard J.</creatorcontrib><description>Based on the recently introduced variational multi-scale (VMS) approach to large-eddy simulation (LES) as introduced in [T.J.R. Hughes, L. Mazzei, K.E. Jansen, Large eddy simulation and the variational multiscale method, Comput. Visual. Sci. 3 (2001) 47–59; S.S. Collis, Monitoring unresolved scales in multiscale turbulence modeling, Phys. Fluids 13 (6) (2001) 1800–1806], we present a VMS formulation which can be used in the simulation of compressible flows. Special attention is given to obtain a VMS formulation which is suitable for complex flow domains and general variational discretization techniques. A generalization of the Favre-averaging procedure is introduced such that the formulation resembles the Favre-filtered Navier–Stokes equations traditionally used in LES of compressible flow, and no explicit subgrid terms arise in the continuity equation. Also, we show that with the use of discretization methods other than Fourier-spectral methods the VMS-projection no longer commutes with differentiation. This results in additional subgrid scale terms which resemble the commutator error as encountered in the traditional filtering approach to LES.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2006.12.005</identifier><identifier>CODEN: CMMECC</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Commutator errors ; Computational techniques ; Discontinuous Galerkin finite element methods ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; General theory ; Large-eddy simulation ; Mathematical methods in physics ; Physics ; Turbulence ; Turbulence simulation and modeling ; Turbulent flows, convection, and heat transfer ; Variational multi-scale method</subject><ispartof>Computer methods in applied mechanics and engineering, 2007-05, Vol.196 (29), p.2863-2875</ispartof><rights>2007 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-59e57d2718b11a34f24323249f8d74d3b4ece35676a15c463cdf0a2b625c41253</citedby><cites>FETCH-LOGICAL-c401t-59e57d2718b11a34f24323249f8d74d3b4ece35676a15c463cdf0a2b625c41253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0045782507000710$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18767816$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>van der Bos, Fedderik</creatorcontrib><creatorcontrib>van der Vegt, Jaap J.W.</creatorcontrib><creatorcontrib>Geurts, Bernard J.</creatorcontrib><title>A multi-scale formulation for compressible turbulent flows suitable for general variational discretization techniques</title><title>Computer methods in applied mechanics and engineering</title><description>Based on the recently introduced variational multi-scale (VMS) approach to large-eddy simulation (LES) as introduced in [T.J.R. Hughes, L. Mazzei, K.E. Jansen, Large eddy simulation and the variational multiscale method, Comput. Visual. Sci. 3 (2001) 47–59; S.S. Collis, Monitoring unresolved scales in multiscale turbulence modeling, Phys. Fluids 13 (6) (2001) 1800–1806], we present a VMS formulation which can be used in the simulation of compressible flows. Special attention is given to obtain a VMS formulation which is suitable for complex flow domains and general variational discretization techniques. A generalization of the Favre-averaging procedure is introduced such that the formulation resembles the Favre-filtered Navier–Stokes equations traditionally used in LES of compressible flow, and no explicit subgrid terms arise in the continuity equation. Also, we show that with the use of discretization methods other than Fourier-spectral methods the VMS-projection no longer commutes with differentiation. This results in additional subgrid scale terms which resemble the commutator error as encountered in the traditional filtering approach to LES.</description><subject>Commutator errors</subject><subject>Computational techniques</subject><subject>Discontinuous Galerkin finite element methods</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>General theory</subject><subject>Large-eddy simulation</subject><subject>Mathematical methods in physics</subject><subject>Physics</subject><subject>Turbulence</subject><subject>Turbulence simulation and modeling</subject><subject>Turbulent flows, convection, and heat transfer</subject><subject>Variational multi-scale method</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPxSAQhYnRxOvjB7jrRnetDNCWxpW58ZXcxI2uCaVT5aaPK1CN_nqpNXEnG2bCOWeGj5AzoBlQKC63mel1xigtMmAZpfkeWYEsq5QBl_tkRanI01Ky_JAceb-l8UhgKzJdJ_3UBZt6oztM2tHFVgc7DnOdmLHfOfTe1vExTK6eOhxC0nbjh0_8ZIOuF1fyggM63SXv2tkff6wb643DYL-WwIDmdbBvE_oTctDqzuPp731Mnm9vntb36ebx7mF9vUmNoBDSvMK8bFgJsgbQXLRMcMaZqFrZlKLhtUCDPC_KQkNuRMFN01LN6oLFDljOj8nFkrtz4zw3qD6uhF2nBxwnr1glBZMVj0JYhMaN3jts1c7ZXrtPBVTNgNVWRcBqBqyAqQg4es5_w_UMr3V6MNb_GWVZlBKKqLtadBh_-m7RKW8sDgYb69AE1Yz2nynfWnGS2Q</recordid><startdate>20070501</startdate><enddate>20070501</enddate><creator>van der Bos, Fedderik</creator><creator>van der Vegt, Jaap J.W.</creator><creator>Geurts, Bernard J.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20070501</creationdate><title>A multi-scale formulation for compressible turbulent flows suitable for general variational discretization techniques</title><author>van der Bos, Fedderik ; van der Vegt, Jaap J.W. ; Geurts, Bernard J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-59e57d2718b11a34f24323249f8d74d3b4ece35676a15c463cdf0a2b625c41253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Commutator errors</topic><topic>Computational techniques</topic><topic>Discontinuous Galerkin finite element methods</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>General theory</topic><topic>Large-eddy simulation</topic><topic>Mathematical methods in physics</topic><topic>Physics</topic><topic>Turbulence</topic><topic>Turbulence simulation and modeling</topic><topic>Turbulent flows, convection, and heat transfer</topic><topic>Variational multi-scale method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van der Bos, Fedderik</creatorcontrib><creatorcontrib>van der Vegt, Jaap J.W.</creatorcontrib><creatorcontrib>Geurts, Bernard J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van der Bos, Fedderik</au><au>van der Vegt, Jaap J.W.</au><au>Geurts, Bernard J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A multi-scale formulation for compressible turbulent flows suitable for general variational discretization techniques</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2007-05-01</date><risdate>2007</risdate><volume>196</volume><issue>29</issue><spage>2863</spage><epage>2875</epage><pages>2863-2875</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><coden>CMMECC</coden><abstract>Based on the recently introduced variational multi-scale (VMS) approach to large-eddy simulation (LES) as introduced in [T.J.R. Hughes, L. Mazzei, K.E. Jansen, Large eddy simulation and the variational multiscale method, Comput. Visual. Sci. 3 (2001) 47–59; S.S. Collis, Monitoring unresolved scales in multiscale turbulence modeling, Phys. Fluids 13 (6) (2001) 1800–1806], we present a VMS formulation which can be used in the simulation of compressible flows. Special attention is given to obtain a VMS formulation which is suitable for complex flow domains and general variational discretization techniques. A generalization of the Favre-averaging procedure is introduced such that the formulation resembles the Favre-filtered Navier–Stokes equations traditionally used in LES of compressible flow, and no explicit subgrid terms arise in the continuity equation. Also, we show that with the use of discretization methods other than Fourier-spectral methods the VMS-projection no longer commutes with differentiation. This results in additional subgrid scale terms which resemble the commutator error as encountered in the traditional filtering approach to LES.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2006.12.005</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7825 |
ispartof | Computer methods in applied mechanics and engineering, 2007-05, Vol.196 (29), p.2863-2875 |
issn | 0045-7825 1879-2138 |
language | eng |
recordid | cdi_proquest_miscellaneous_29842893 |
source | Elsevier ScienceDirect Journals |
subjects | Commutator errors Computational techniques Discontinuous Galerkin finite element methods Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) General theory Large-eddy simulation Mathematical methods in physics Physics Turbulence Turbulence simulation and modeling Turbulent flows, convection, and heat transfer Variational multi-scale method |
title | A multi-scale formulation for compressible turbulent flows suitable for general variational discretization techniques |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A11%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20multi-scale%20formulation%20for%20compressible%20turbulent%20flows%20suitable%20for%20general%20variational%20discretization%20techniques&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=van%20der%20Bos,%20Fedderik&rft.date=2007-05-01&rft.volume=196&rft.issue=29&rft.spage=2863&rft.epage=2875&rft.pages=2863-2875&rft.issn=0045-7825&rft.eissn=1879-2138&rft.coden=CMMECC&rft_id=info:doi/10.1016/j.cma.2006.12.005&rft_dat=%3Cproquest_cross%3E29842893%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29842893&rft_id=info:pmid/&rft_els_id=S0045782507000710&rfr_iscdi=true |