A multi-scale formulation for compressible turbulent flows suitable for general variational discretization techniques

Based on the recently introduced variational multi-scale (VMS) approach to large-eddy simulation (LES) as introduced in [T.J.R. Hughes, L. Mazzei, K.E. Jansen, Large eddy simulation and the variational multiscale method, Comput. Visual. Sci. 3 (2001) 47–59; S.S. Collis, Monitoring unresolved scales...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2007-05, Vol.196 (29), p.2863-2875
Hauptverfasser: van der Bos, Fedderik, van der Vegt, Jaap J.W., Geurts, Bernard J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2875
container_issue 29
container_start_page 2863
container_title Computer methods in applied mechanics and engineering
container_volume 196
creator van der Bos, Fedderik
van der Vegt, Jaap J.W.
Geurts, Bernard J.
description Based on the recently introduced variational multi-scale (VMS) approach to large-eddy simulation (LES) as introduced in [T.J.R. Hughes, L. Mazzei, K.E. Jansen, Large eddy simulation and the variational multiscale method, Comput. Visual. Sci. 3 (2001) 47–59; S.S. Collis, Monitoring unresolved scales in multiscale turbulence modeling, Phys. Fluids 13 (6) (2001) 1800–1806], we present a VMS formulation which can be used in the simulation of compressible flows. Special attention is given to obtain a VMS formulation which is suitable for complex flow domains and general variational discretization techniques. A generalization of the Favre-averaging procedure is introduced such that the formulation resembles the Favre-filtered Navier–Stokes equations traditionally used in LES of compressible flow, and no explicit subgrid terms arise in the continuity equation. Also, we show that with the use of discretization methods other than Fourier-spectral methods the VMS-projection no longer commutes with differentiation. This results in additional subgrid scale terms which resemble the commutator error as encountered in the traditional filtering approach to LES.
doi_str_mv 10.1016/j.cma.2006.12.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29842893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782507000710</els_id><sourcerecordid>29842893</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-59e57d2718b11a34f24323249f8d74d3b4ece35676a15c463cdf0a2b625c41253</originalsourceid><addsrcrecordid>eNp9kEtPxSAQhYnRxOvjB7jrRnetDNCWxpW58ZXcxI2uCaVT5aaPK1CN_nqpNXEnG2bCOWeGj5AzoBlQKC63mel1xigtMmAZpfkeWYEsq5QBl_tkRanI01Ky_JAceb-l8UhgKzJdJ_3UBZt6oztM2tHFVgc7DnOdmLHfOfTe1vExTK6eOhxC0nbjh0_8ZIOuF1fyggM63SXv2tkff6wb643DYL-WwIDmdbBvE_oTctDqzuPp731Mnm9vntb36ebx7mF9vUmNoBDSvMK8bFgJsgbQXLRMcMaZqFrZlKLhtUCDPC_KQkNuRMFN01LN6oLFDljOj8nFkrtz4zw3qD6uhF2nBxwnr1glBZMVj0JYhMaN3jts1c7ZXrtPBVTNgNVWRcBqBqyAqQg4es5_w_UMr3V6MNb_GWVZlBKKqLtadBh_-m7RKW8sDgYb69AE1Yz2nynfWnGS2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29842893</pqid></control><display><type>article</type><title>A multi-scale formulation for compressible turbulent flows suitable for general variational discretization techniques</title><source>Elsevier ScienceDirect Journals</source><creator>van der Bos, Fedderik ; van der Vegt, Jaap J.W. ; Geurts, Bernard J.</creator><creatorcontrib>van der Bos, Fedderik ; van der Vegt, Jaap J.W. ; Geurts, Bernard J.</creatorcontrib><description>Based on the recently introduced variational multi-scale (VMS) approach to large-eddy simulation (LES) as introduced in [T.J.R. Hughes, L. Mazzei, K.E. Jansen, Large eddy simulation and the variational multiscale method, Comput. Visual. Sci. 3 (2001) 47–59; S.S. Collis, Monitoring unresolved scales in multiscale turbulence modeling, Phys. Fluids 13 (6) (2001) 1800–1806], we present a VMS formulation which can be used in the simulation of compressible flows. Special attention is given to obtain a VMS formulation which is suitable for complex flow domains and general variational discretization techniques. A generalization of the Favre-averaging procedure is introduced such that the formulation resembles the Favre-filtered Navier–Stokes equations traditionally used in LES of compressible flow, and no explicit subgrid terms arise in the continuity equation. Also, we show that with the use of discretization methods other than Fourier-spectral methods the VMS-projection no longer commutes with differentiation. This results in additional subgrid scale terms which resemble the commutator error as encountered in the traditional filtering approach to LES.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2006.12.005</identifier><identifier>CODEN: CMMECC</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Commutator errors ; Computational techniques ; Discontinuous Galerkin finite element methods ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; General theory ; Large-eddy simulation ; Mathematical methods in physics ; Physics ; Turbulence ; Turbulence simulation and modeling ; Turbulent flows, convection, and heat transfer ; Variational multi-scale method</subject><ispartof>Computer methods in applied mechanics and engineering, 2007-05, Vol.196 (29), p.2863-2875</ispartof><rights>2007 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-59e57d2718b11a34f24323249f8d74d3b4ece35676a15c463cdf0a2b625c41253</citedby><cites>FETCH-LOGICAL-c401t-59e57d2718b11a34f24323249f8d74d3b4ece35676a15c463cdf0a2b625c41253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0045782507000710$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18767816$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>van der Bos, Fedderik</creatorcontrib><creatorcontrib>van der Vegt, Jaap J.W.</creatorcontrib><creatorcontrib>Geurts, Bernard J.</creatorcontrib><title>A multi-scale formulation for compressible turbulent flows suitable for general variational discretization techniques</title><title>Computer methods in applied mechanics and engineering</title><description>Based on the recently introduced variational multi-scale (VMS) approach to large-eddy simulation (LES) as introduced in [T.J.R. Hughes, L. Mazzei, K.E. Jansen, Large eddy simulation and the variational multiscale method, Comput. Visual. Sci. 3 (2001) 47–59; S.S. Collis, Monitoring unresolved scales in multiscale turbulence modeling, Phys. Fluids 13 (6) (2001) 1800–1806], we present a VMS formulation which can be used in the simulation of compressible flows. Special attention is given to obtain a VMS formulation which is suitable for complex flow domains and general variational discretization techniques. A generalization of the Favre-averaging procedure is introduced such that the formulation resembles the Favre-filtered Navier–Stokes equations traditionally used in LES of compressible flow, and no explicit subgrid terms arise in the continuity equation. Also, we show that with the use of discretization methods other than Fourier-spectral methods the VMS-projection no longer commutes with differentiation. This results in additional subgrid scale terms which resemble the commutator error as encountered in the traditional filtering approach to LES.</description><subject>Commutator errors</subject><subject>Computational techniques</subject><subject>Discontinuous Galerkin finite element methods</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>General theory</subject><subject>Large-eddy simulation</subject><subject>Mathematical methods in physics</subject><subject>Physics</subject><subject>Turbulence</subject><subject>Turbulence simulation and modeling</subject><subject>Turbulent flows, convection, and heat transfer</subject><subject>Variational multi-scale method</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPxSAQhYnRxOvjB7jrRnetDNCWxpW58ZXcxI2uCaVT5aaPK1CN_nqpNXEnG2bCOWeGj5AzoBlQKC63mel1xigtMmAZpfkeWYEsq5QBl_tkRanI01Ky_JAceb-l8UhgKzJdJ_3UBZt6oztM2tHFVgc7DnOdmLHfOfTe1vExTK6eOhxC0nbjh0_8ZIOuF1fyggM63SXv2tkff6wb643DYL-WwIDmdbBvE_oTctDqzuPp731Mnm9vntb36ebx7mF9vUmNoBDSvMK8bFgJsgbQXLRMcMaZqFrZlKLhtUCDPC_KQkNuRMFN01LN6oLFDljOj8nFkrtz4zw3qD6uhF2nBxwnr1glBZMVj0JYhMaN3jts1c7ZXrtPBVTNgNVWRcBqBqyAqQg4es5_w_UMr3V6MNb_GWVZlBKKqLtadBh_-m7RKW8sDgYb69AE1Yz2nynfWnGS2Q</recordid><startdate>20070501</startdate><enddate>20070501</enddate><creator>van der Bos, Fedderik</creator><creator>van der Vegt, Jaap J.W.</creator><creator>Geurts, Bernard J.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20070501</creationdate><title>A multi-scale formulation for compressible turbulent flows suitable for general variational discretization techniques</title><author>van der Bos, Fedderik ; van der Vegt, Jaap J.W. ; Geurts, Bernard J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-59e57d2718b11a34f24323249f8d74d3b4ece35676a15c463cdf0a2b625c41253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Commutator errors</topic><topic>Computational techniques</topic><topic>Discontinuous Galerkin finite element methods</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>General theory</topic><topic>Large-eddy simulation</topic><topic>Mathematical methods in physics</topic><topic>Physics</topic><topic>Turbulence</topic><topic>Turbulence simulation and modeling</topic><topic>Turbulent flows, convection, and heat transfer</topic><topic>Variational multi-scale method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van der Bos, Fedderik</creatorcontrib><creatorcontrib>van der Vegt, Jaap J.W.</creatorcontrib><creatorcontrib>Geurts, Bernard J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van der Bos, Fedderik</au><au>van der Vegt, Jaap J.W.</au><au>Geurts, Bernard J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A multi-scale formulation for compressible turbulent flows suitable for general variational discretization techniques</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2007-05-01</date><risdate>2007</risdate><volume>196</volume><issue>29</issue><spage>2863</spage><epage>2875</epage><pages>2863-2875</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><coden>CMMECC</coden><abstract>Based on the recently introduced variational multi-scale (VMS) approach to large-eddy simulation (LES) as introduced in [T.J.R. Hughes, L. Mazzei, K.E. Jansen, Large eddy simulation and the variational multiscale method, Comput. Visual. Sci. 3 (2001) 47–59; S.S. Collis, Monitoring unresolved scales in multiscale turbulence modeling, Phys. Fluids 13 (6) (2001) 1800–1806], we present a VMS formulation which can be used in the simulation of compressible flows. Special attention is given to obtain a VMS formulation which is suitable for complex flow domains and general variational discretization techniques. A generalization of the Favre-averaging procedure is introduced such that the formulation resembles the Favre-filtered Navier–Stokes equations traditionally used in LES of compressible flow, and no explicit subgrid terms arise in the continuity equation. Also, we show that with the use of discretization methods other than Fourier-spectral methods the VMS-projection no longer commutes with differentiation. This results in additional subgrid scale terms which resemble the commutator error as encountered in the traditional filtering approach to LES.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2006.12.005</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2007-05, Vol.196 (29), p.2863-2875
issn 0045-7825
1879-2138
language eng
recordid cdi_proquest_miscellaneous_29842893
source Elsevier ScienceDirect Journals
subjects Commutator errors
Computational techniques
Discontinuous Galerkin finite element methods
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
General theory
Large-eddy simulation
Mathematical methods in physics
Physics
Turbulence
Turbulence simulation and modeling
Turbulent flows, convection, and heat transfer
Variational multi-scale method
title A multi-scale formulation for compressible turbulent flows suitable for general variational discretization techniques
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A11%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20multi-scale%20formulation%20for%20compressible%20turbulent%20flows%20suitable%20for%20general%20variational%20discretization%20techniques&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=van%20der%20Bos,%20Fedderik&rft.date=2007-05-01&rft.volume=196&rft.issue=29&rft.spage=2863&rft.epage=2875&rft.pages=2863-2875&rft.issn=0045-7825&rft.eissn=1879-2138&rft.coden=CMMECC&rft_id=info:doi/10.1016/j.cma.2006.12.005&rft_dat=%3Cproquest_cross%3E29842893%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29842893&rft_id=info:pmid/&rft_els_id=S0045782507000710&rfr_iscdi=true