Interestingness measures for data mining: A survey

Interestingness measures play an important role in data mining, regardless of the kind of patterns being mined. These measures are intended for selecting and ranking patterns according to their potential interest to the user. Good measures also allow the time and space costs of the mining process to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM computing surveys 2006-01, Vol.38 (3), p.9
Hauptverfasser: Geng, Liqiang, Hamilton, Howard J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 9
container_title ACM computing surveys
container_volume 38
creator Geng, Liqiang
Hamilton, Howard J
description Interestingness measures play an important role in data mining, regardless of the kind of patterns being mined. These measures are intended for selecting and ranking patterns according to their potential interest to the user. Good measures also allow the time and space costs of the mining process to be reduced. This survey reviews the interestingness measures for rules and summaries, classifies them from several perspectives, compares their properties, identifies their roles in the data mining process, gives strategies for selecting appropriate measures for applications, and identifies opportunities for future research in this area.
doi_str_mv 10.1145/1132960.1132963
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29842485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1147086621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c253t-1c417ef8bedc49e00059c8fe6563e8bdc652bb9c96f2e5d0b88e909337874eb3</originalsourceid><addsrcrecordid>eNpdkDFPwzAQhS0EEqUws0YMiCXU57Mde0QVhUqVWLpbiXNBqZqk2MnAv8dROzE93b1Pd0-PsUfgrwBSrQBQWD0Ps-IVW4BSRV6ghGu24Kh5zpHzW3YX44FzLiToBXvZ9iMFimPbf_cUY9ZRGae0yJohZHU5llnX9sm8ZzdNeYz0cNEl22_e9-vPfPf1sV2_7XIvFI45eAkFNaai2ktL6Y-y3jSklUYyVe21ElVlvdWNIFXzyhiy3CIWppBU4ZI9n8-ewvAzpVyua6On47HsaZiiE9ZIIY1K4NM_8DBMoU_RHFgFBpWABK3OkA9DjIEadwptV4ZfB9zNrblLaxdF_AM_rV2d</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195183521</pqid></control><display><type>article</type><title>Interestingness measures for data mining: A survey</title><source>ACM Digital Library Complete</source><creator>Geng, Liqiang ; Hamilton, Howard J</creator><creatorcontrib>Geng, Liqiang ; Hamilton, Howard J</creatorcontrib><description>Interestingness measures play an important role in data mining, regardless of the kind of patterns being mined. These measures are intended for selecting and ranking patterns according to their potential interest to the user. Good measures also allow the time and space costs of the mining process to be reduced. This survey reviews the interestingness measures for rules and summaries, classifies them from several perspectives, compares their properties, identifies their roles in the data mining process, gives strategies for selecting appropriate measures for applications, and identifies opportunities for future research in this area.</description><identifier>ISSN: 0360-0300</identifier><identifier>EISSN: 1557-7341</identifier><identifier>DOI: 10.1145/1132960.1132963</identifier><language>eng</language><publisher>Baltimore: Association for Computing Machinery</publisher><subject>Algorithms ; Computer science ; Data mining ; Datasets ; Knowledge ; Mathematical models ; R&amp;D ; Research &amp; development ; Statistical analysis ; Studies</subject><ispartof>ACM computing surveys, 2006-01, Vol.38 (3), p.9</ispartof><rights>Copyright Association for Computing Machinery 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c253t-1c417ef8bedc49e00059c8fe6563e8bdc652bb9c96f2e5d0b88e909337874eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Geng, Liqiang</creatorcontrib><creatorcontrib>Hamilton, Howard J</creatorcontrib><title>Interestingness measures for data mining: A survey</title><title>ACM computing surveys</title><description>Interestingness measures play an important role in data mining, regardless of the kind of patterns being mined. These measures are intended for selecting and ranking patterns according to their potential interest to the user. Good measures also allow the time and space costs of the mining process to be reduced. This survey reviews the interestingness measures for rules and summaries, classifies them from several perspectives, compares their properties, identifies their roles in the data mining process, gives strategies for selecting appropriate measures for applications, and identifies opportunities for future research in this area.</description><subject>Algorithms</subject><subject>Computer science</subject><subject>Data mining</subject><subject>Datasets</subject><subject>Knowledge</subject><subject>Mathematical models</subject><subject>R&amp;D</subject><subject>Research &amp; development</subject><subject>Statistical analysis</subject><subject>Studies</subject><issn>0360-0300</issn><issn>1557-7341</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpdkDFPwzAQhS0EEqUws0YMiCXU57Mde0QVhUqVWLpbiXNBqZqk2MnAv8dROzE93b1Pd0-PsUfgrwBSrQBQWD0Ps-IVW4BSRV6ghGu24Kh5zpHzW3YX44FzLiToBXvZ9iMFimPbf_cUY9ZRGae0yJohZHU5llnX9sm8ZzdNeYz0cNEl22_e9-vPfPf1sV2_7XIvFI45eAkFNaai2ktL6Y-y3jSklUYyVe21ElVlvdWNIFXzyhiy3CIWppBU4ZI9n8-ewvAzpVyua6On47HsaZiiE9ZIIY1K4NM_8DBMoU_RHFgFBpWABK3OkA9DjIEadwptV4ZfB9zNrblLaxdF_AM_rV2d</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>Geng, Liqiang</creator><creator>Hamilton, Howard J</creator><general>Association for Computing Machinery</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20060101</creationdate><title>Interestingness measures for data mining</title><author>Geng, Liqiang ; Hamilton, Howard J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c253t-1c417ef8bedc49e00059c8fe6563e8bdc652bb9c96f2e5d0b88e909337874eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Computer science</topic><topic>Data mining</topic><topic>Datasets</topic><topic>Knowledge</topic><topic>Mathematical models</topic><topic>R&amp;D</topic><topic>Research &amp; development</topic><topic>Statistical analysis</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geng, Liqiang</creatorcontrib><creatorcontrib>Hamilton, Howard J</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ACM computing surveys</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geng, Liqiang</au><au>Hamilton, Howard J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interestingness measures for data mining: A survey</atitle><jtitle>ACM computing surveys</jtitle><date>2006-01-01</date><risdate>2006</risdate><volume>38</volume><issue>3</issue><spage>9</spage><pages>9-</pages><issn>0360-0300</issn><eissn>1557-7341</eissn><abstract>Interestingness measures play an important role in data mining, regardless of the kind of patterns being mined. These measures are intended for selecting and ranking patterns according to their potential interest to the user. Good measures also allow the time and space costs of the mining process to be reduced. This survey reviews the interestingness measures for rules and summaries, classifies them from several perspectives, compares their properties, identifies their roles in the data mining process, gives strategies for selecting appropriate measures for applications, and identifies opportunities for future research in this area.</abstract><cop>Baltimore</cop><pub>Association for Computing Machinery</pub><doi>10.1145/1132960.1132963</doi></addata></record>
fulltext fulltext
identifier ISSN: 0360-0300
ispartof ACM computing surveys, 2006-01, Vol.38 (3), p.9
issn 0360-0300
1557-7341
language eng
recordid cdi_proquest_miscellaneous_29842485
source ACM Digital Library Complete
subjects Algorithms
Computer science
Data mining
Datasets
Knowledge
Mathematical models
R&D
Research & development
Statistical analysis
Studies
title Interestingness measures for data mining: A survey
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T15%3A30%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interestingness%20measures%20for%20data%20mining:%20A%20survey&rft.jtitle=ACM%20computing%20surveys&rft.au=Geng,%20Liqiang&rft.date=2006-01-01&rft.volume=38&rft.issue=3&rft.spage=9&rft.pages=9-&rft.issn=0360-0300&rft.eissn=1557-7341&rft_id=info:doi/10.1145/1132960.1132963&rft_dat=%3Cproquest_cross%3E1147086621%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195183521&rft_id=info:pmid/&rfr_iscdi=true