Growth of Si/III–V-N/Si structure with two-chamber molecular beam epitaxy system for optoelectronic integrated circuits
A Si/III–V-N/Si structure for optoelectronic integrated circuits (OEICs) was grown using a two-chamber molecular beam epitaxy (MBE) system to decrease a carrier concentration of Si epilayer for metal oxide field effect transistors (MOSFETs). At first, a GaP layer was grown by migration-enhanced epit...
Gespeichert in:
Veröffentlicht in: | Journal of crystal growth 2007-03, Vol.300 (1), p.172-176 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 176 |
---|---|
container_issue | 1 |
container_start_page | 172 |
container_title | Journal of crystal growth |
container_volume | 300 |
creator | Furukawa, Y. Yonezu, H. Wakahara, A. Ishiji, S. Moon, S.Y. Morisaki, Y. |
description | A Si/III–V-N/Si structure for optoelectronic integrated circuits (OEICs) was grown using a two-chamber molecular beam epitaxy (MBE) system to decrease a carrier concentration of Si epilayer for metal oxide field effect transistors (MOSFETs). At first, a GaP layer was grown by migration-enhanced epitaxy on a Si substrate. Two-dimensional growth mode was maintained, and self-annihilation of anti-phase domain was confirmed. The growth process was also identified from reflection high-energy electron diffraction patterns during the growth. Subsequently, an InGaPN/GaPN double-hetero light-emitting diode (LED) and a topmost Si layer were grown by the dislocation-free growth process. It was found that a carrier concentration of the topmost Si epilayer was decreased to 4.0–6.6×10
17
cm
−3 from 3.0–6.7×10
18
cm
−3 by using the two-chamber MBE system instead of a single-chamber MBE system. The carrier concentration could be adapted to the fabrication of MOSFETs. Finally, we have fabricated elemental devices on the Si/III–V-N/Si structure and obtained characteristics of pMOSFETs and LEDs successfully. It was confirmed that the two-chamber MBE system could be available to the realization of OEICs. |
doi_str_mv | 10.1016/j.jcrysgro.2006.11.021 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29840037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022024806012139</els_id><sourcerecordid>29840037</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-cbcf24e34f6c3719eeca3a6bebb18901ed629c625b166d2b570ed5aa39b05eb43</originalsourceid><addsrcrecordid>eNqFkM1u1DAURi0EEsOUV0DewC4Z_ySeZAeqoIxUtYvSbi3buWk9SuLh2mHIjnfoG_IkuJoilmx8Jet899M9hLzjrOSMq82-3Dtc4j2GUjCmSs5LJvgLsuLNVhY1Y-IlWeVXFExUzWvyJsY9YznJ2YosFxiO6YGGnt74zW63-_3r8a642tx4GhPOLs0I9OgzkY6hcA9mtIB0DAO4eTBILZiRwsEn83OhcYkJRtoHpOGQAmQoYZi8o35KcI8mQUedRzf7FM_Iq94MEd4-zzW5_fL52_nX4vL6Ynf-6bJwcitT4azrRQWy6lX-4C2AM9IoC9bypmUcOiVap0RtuVKdsPWWQVcbI1vLarCVXJMPp70HDN9niEmPPjoYBjNBmKMWbVMxlrvWRJ1AhyFGhF4f0I8GF82ZfjKt9_qvaf1kWnOus-kcfP_cYKIzQ49mcj7-SzdKyrpqMvfxxEE-94cH1NF5mBx0HrMp3QX_v6o_96yb6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29840037</pqid></control><display><type>article</type><title>Growth of Si/III–V-N/Si structure with two-chamber molecular beam epitaxy system for optoelectronic integrated circuits</title><source>Elsevier ScienceDirect Journals</source><creator>Furukawa, Y. ; Yonezu, H. ; Wakahara, A. ; Ishiji, S. ; Moon, S.Y. ; Morisaki, Y.</creator><creatorcontrib>Furukawa, Y. ; Yonezu, H. ; Wakahara, A. ; Ishiji, S. ; Moon, S.Y. ; Morisaki, Y.</creatorcontrib><description>A Si/III–V-N/Si structure for optoelectronic integrated circuits (OEICs) was grown using a two-chamber molecular beam epitaxy (MBE) system to decrease a carrier concentration of Si epilayer for metal oxide field effect transistors (MOSFETs). At first, a GaP layer was grown by migration-enhanced epitaxy on a Si substrate. Two-dimensional growth mode was maintained, and self-annihilation of anti-phase domain was confirmed. The growth process was also identified from reflection high-energy electron diffraction patterns during the growth. Subsequently, an InGaPN/GaPN double-hetero light-emitting diode (LED) and a topmost Si layer were grown by the dislocation-free growth process. It was found that a carrier concentration of the topmost Si epilayer was decreased to 4.0–6.6×10
17
cm
−3 from 3.0–6.7×10
18
cm
−3 by using the two-chamber MBE system instead of a single-chamber MBE system. The carrier concentration could be adapted to the fabrication of MOSFETs. Finally, we have fabricated elemental devices on the Si/III–V-N/Si structure and obtained characteristics of pMOSFETs and LEDs successfully. It was confirmed that the two-chamber MBE system could be available to the realization of OEICs.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2006.11.021</identifier><identifier>CODEN: JCRGAE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A1. Growth models ; A3. Migration-enhanced epitaxy ; A3. Molecular beam epitaxy ; Applied sciences ; B1. Nitrides ; B2. Semiconducting gallium compounds ; B2. Semiconducting silicon ; Cross-disciplinary physics: materials science; rheology ; Electronics ; Exact sciences and technology ; Growth from vapor ; Materials science ; Methods of crystal growth; physics of crystal growth ; Methods of deposition of films and coatings; film growth and epitaxy ; Molecular, atomic, ion, and chemical beam epitaxy ; Optoelectronic devices ; Physics ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Theory and models of film growth</subject><ispartof>Journal of crystal growth, 2007-03, Vol.300 (1), p.172-176</ispartof><rights>2006 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-cbcf24e34f6c3719eeca3a6bebb18901ed629c625b166d2b570ed5aa39b05eb43</citedby><cites>FETCH-LOGICAL-c373t-cbcf24e34f6c3719eeca3a6bebb18901ed629c625b166d2b570ed5aa39b05eb43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022024806012139$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18633548$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Furukawa, Y.</creatorcontrib><creatorcontrib>Yonezu, H.</creatorcontrib><creatorcontrib>Wakahara, A.</creatorcontrib><creatorcontrib>Ishiji, S.</creatorcontrib><creatorcontrib>Moon, S.Y.</creatorcontrib><creatorcontrib>Morisaki, Y.</creatorcontrib><title>Growth of Si/III–V-N/Si structure with two-chamber molecular beam epitaxy system for optoelectronic integrated circuits</title><title>Journal of crystal growth</title><description>A Si/III–V-N/Si structure for optoelectronic integrated circuits (OEICs) was grown using a two-chamber molecular beam epitaxy (MBE) system to decrease a carrier concentration of Si epilayer for metal oxide field effect transistors (MOSFETs). At first, a GaP layer was grown by migration-enhanced epitaxy on a Si substrate. Two-dimensional growth mode was maintained, and self-annihilation of anti-phase domain was confirmed. The growth process was also identified from reflection high-energy electron diffraction patterns during the growth. Subsequently, an InGaPN/GaPN double-hetero light-emitting diode (LED) and a topmost Si layer were grown by the dislocation-free growth process. It was found that a carrier concentration of the topmost Si epilayer was decreased to 4.0–6.6×10
17
cm
−3 from 3.0–6.7×10
18
cm
−3 by using the two-chamber MBE system instead of a single-chamber MBE system. The carrier concentration could be adapted to the fabrication of MOSFETs. Finally, we have fabricated elemental devices on the Si/III–V-N/Si structure and obtained characteristics of pMOSFETs and LEDs successfully. It was confirmed that the two-chamber MBE system could be available to the realization of OEICs.</description><subject>A1. Growth models</subject><subject>A3. Migration-enhanced epitaxy</subject><subject>A3. Molecular beam epitaxy</subject><subject>Applied sciences</subject><subject>B1. Nitrides</subject><subject>B2. Semiconducting gallium compounds</subject><subject>B2. Semiconducting silicon</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Growth from vapor</subject><subject>Materials science</subject><subject>Methods of crystal growth; physics of crystal growth</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Molecular, atomic, ion, and chemical beam epitaxy</subject><subject>Optoelectronic devices</subject><subject>Physics</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Theory and models of film growth</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkM1u1DAURi0EEsOUV0DewC4Z_ySeZAeqoIxUtYvSbi3buWk9SuLh2mHIjnfoG_IkuJoilmx8Jet899M9hLzjrOSMq82-3Dtc4j2GUjCmSs5LJvgLsuLNVhY1Y-IlWeVXFExUzWvyJsY9YznJ2YosFxiO6YGGnt74zW63-_3r8a642tx4GhPOLs0I9OgzkY6hcA9mtIB0DAO4eTBILZiRwsEn83OhcYkJRtoHpOGQAmQoYZi8o35KcI8mQUedRzf7FM_Iq94MEd4-zzW5_fL52_nX4vL6Ynf-6bJwcitT4azrRQWy6lX-4C2AM9IoC9bypmUcOiVap0RtuVKdsPWWQVcbI1vLarCVXJMPp70HDN9niEmPPjoYBjNBmKMWbVMxlrvWRJ1AhyFGhF4f0I8GF82ZfjKt9_qvaf1kWnOus-kcfP_cYKIzQ49mcj7-SzdKyrpqMvfxxEE-94cH1NF5mBx0HrMp3QX_v6o_96yb6w</recordid><startdate>20070301</startdate><enddate>20070301</enddate><creator>Furukawa, Y.</creator><creator>Yonezu, H.</creator><creator>Wakahara, A.</creator><creator>Ishiji, S.</creator><creator>Moon, S.Y.</creator><creator>Morisaki, Y.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20070301</creationdate><title>Growth of Si/III–V-N/Si structure with two-chamber molecular beam epitaxy system for optoelectronic integrated circuits</title><author>Furukawa, Y. ; Yonezu, H. ; Wakahara, A. ; Ishiji, S. ; Moon, S.Y. ; Morisaki, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-cbcf24e34f6c3719eeca3a6bebb18901ed629c625b166d2b570ed5aa39b05eb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>A1. Growth models</topic><topic>A3. Migration-enhanced epitaxy</topic><topic>A3. Molecular beam epitaxy</topic><topic>Applied sciences</topic><topic>B1. Nitrides</topic><topic>B2. Semiconducting gallium compounds</topic><topic>B2. Semiconducting silicon</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Growth from vapor</topic><topic>Materials science</topic><topic>Methods of crystal growth; physics of crystal growth</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Molecular, atomic, ion, and chemical beam epitaxy</topic><topic>Optoelectronic devices</topic><topic>Physics</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Theory and models of film growth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Furukawa, Y.</creatorcontrib><creatorcontrib>Yonezu, H.</creatorcontrib><creatorcontrib>Wakahara, A.</creatorcontrib><creatorcontrib>Ishiji, S.</creatorcontrib><creatorcontrib>Moon, S.Y.</creatorcontrib><creatorcontrib>Morisaki, Y.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Furukawa, Y.</au><au>Yonezu, H.</au><au>Wakahara, A.</au><au>Ishiji, S.</au><au>Moon, S.Y.</au><au>Morisaki, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Growth of Si/III–V-N/Si structure with two-chamber molecular beam epitaxy system for optoelectronic integrated circuits</atitle><jtitle>Journal of crystal growth</jtitle><date>2007-03-01</date><risdate>2007</risdate><volume>300</volume><issue>1</issue><spage>172</spage><epage>176</epage><pages>172-176</pages><issn>0022-0248</issn><eissn>1873-5002</eissn><coden>JCRGAE</coden><abstract>A Si/III–V-N/Si structure for optoelectronic integrated circuits (OEICs) was grown using a two-chamber molecular beam epitaxy (MBE) system to decrease a carrier concentration of Si epilayer for metal oxide field effect transistors (MOSFETs). At first, a GaP layer was grown by migration-enhanced epitaxy on a Si substrate. Two-dimensional growth mode was maintained, and self-annihilation of anti-phase domain was confirmed. The growth process was also identified from reflection high-energy electron diffraction patterns during the growth. Subsequently, an InGaPN/GaPN double-hetero light-emitting diode (LED) and a topmost Si layer were grown by the dislocation-free growth process. It was found that a carrier concentration of the topmost Si epilayer was decreased to 4.0–6.6×10
17
cm
−3 from 3.0–6.7×10
18
cm
−3 by using the two-chamber MBE system instead of a single-chamber MBE system. The carrier concentration could be adapted to the fabrication of MOSFETs. Finally, we have fabricated elemental devices on the Si/III–V-N/Si structure and obtained characteristics of pMOSFETs and LEDs successfully. It was confirmed that the two-chamber MBE system could be available to the realization of OEICs.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2006.11.021</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0248 |
ispartof | Journal of crystal growth, 2007-03, Vol.300 (1), p.172-176 |
issn | 0022-0248 1873-5002 |
language | eng |
recordid | cdi_proquest_miscellaneous_29840037 |
source | Elsevier ScienceDirect Journals |
subjects | A1. Growth models A3. Migration-enhanced epitaxy A3. Molecular beam epitaxy Applied sciences B1. Nitrides B2. Semiconducting gallium compounds B2. Semiconducting silicon Cross-disciplinary physics: materials science rheology Electronics Exact sciences and technology Growth from vapor Materials science Methods of crystal growth physics of crystal growth Methods of deposition of films and coatings film growth and epitaxy Molecular, atomic, ion, and chemical beam epitaxy Optoelectronic devices Physics Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Theory and models of film growth |
title | Growth of Si/III–V-N/Si structure with two-chamber molecular beam epitaxy system for optoelectronic integrated circuits |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A30%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Growth%20of%20Si/III%E2%80%93V-N/Si%20structure%20with%20two-chamber%20molecular%20beam%20epitaxy%20system%20for%20optoelectronic%20integrated%20circuits&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Furukawa,%20Y.&rft.date=2007-03-01&rft.volume=300&rft.issue=1&rft.spage=172&rft.epage=176&rft.pages=172-176&rft.issn=0022-0248&rft.eissn=1873-5002&rft.coden=JCRGAE&rft_id=info:doi/10.1016/j.jcrysgro.2006.11.021&rft_dat=%3Cproquest_cross%3E29840037%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29840037&rft_id=info:pmid/&rft_els_id=S0022024806012139&rfr_iscdi=true |