Growth of Si/III–V-N/Si structure with two-chamber molecular beam epitaxy system for optoelectronic integrated circuits

A Si/III–V-N/Si structure for optoelectronic integrated circuits (OEICs) was grown using a two-chamber molecular beam epitaxy (MBE) system to decrease a carrier concentration of Si epilayer for metal oxide field effect transistors (MOSFETs). At first, a GaP layer was grown by migration-enhanced epit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of crystal growth 2007-03, Vol.300 (1), p.172-176
Hauptverfasser: Furukawa, Y., Yonezu, H., Wakahara, A., Ishiji, S., Moon, S.Y., Morisaki, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 176
container_issue 1
container_start_page 172
container_title Journal of crystal growth
container_volume 300
creator Furukawa, Y.
Yonezu, H.
Wakahara, A.
Ishiji, S.
Moon, S.Y.
Morisaki, Y.
description A Si/III–V-N/Si structure for optoelectronic integrated circuits (OEICs) was grown using a two-chamber molecular beam epitaxy (MBE) system to decrease a carrier concentration of Si epilayer for metal oxide field effect transistors (MOSFETs). At first, a GaP layer was grown by migration-enhanced epitaxy on a Si substrate. Two-dimensional growth mode was maintained, and self-annihilation of anti-phase domain was confirmed. The growth process was also identified from reflection high-energy electron diffraction patterns during the growth. Subsequently, an InGaPN/GaPN double-hetero light-emitting diode (LED) and a topmost Si layer were grown by the dislocation-free growth process. It was found that a carrier concentration of the topmost Si epilayer was decreased to 4.0–6.6×10 17 cm −3 from 3.0–6.7×10 18 cm −3 by using the two-chamber MBE system instead of a single-chamber MBE system. The carrier concentration could be adapted to the fabrication of MOSFETs. Finally, we have fabricated elemental devices on the Si/III–V-N/Si structure and obtained characteristics of pMOSFETs and LEDs successfully. It was confirmed that the two-chamber MBE system could be available to the realization of OEICs.
doi_str_mv 10.1016/j.jcrysgro.2006.11.021
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29840037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022024806012139</els_id><sourcerecordid>29840037</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-cbcf24e34f6c3719eeca3a6bebb18901ed629c625b166d2b570ed5aa39b05eb43</originalsourceid><addsrcrecordid>eNqFkM1u1DAURi0EEsOUV0DewC4Z_ySeZAeqoIxUtYvSbi3buWk9SuLh2mHIjnfoG_IkuJoilmx8Jet899M9hLzjrOSMq82-3Dtc4j2GUjCmSs5LJvgLsuLNVhY1Y-IlWeVXFExUzWvyJsY9YznJ2YosFxiO6YGGnt74zW63-_3r8a642tx4GhPOLs0I9OgzkY6hcA9mtIB0DAO4eTBILZiRwsEn83OhcYkJRtoHpOGQAmQoYZi8o35KcI8mQUedRzf7FM_Iq94MEd4-zzW5_fL52_nX4vL6Ynf-6bJwcitT4azrRQWy6lX-4C2AM9IoC9bypmUcOiVap0RtuVKdsPWWQVcbI1vLarCVXJMPp70HDN9niEmPPjoYBjNBmKMWbVMxlrvWRJ1AhyFGhF4f0I8GF82ZfjKt9_qvaf1kWnOus-kcfP_cYKIzQ49mcj7-SzdKyrpqMvfxxEE-94cH1NF5mBx0HrMp3QX_v6o_96yb6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29840037</pqid></control><display><type>article</type><title>Growth of Si/III–V-N/Si structure with two-chamber molecular beam epitaxy system for optoelectronic integrated circuits</title><source>Elsevier ScienceDirect Journals</source><creator>Furukawa, Y. ; Yonezu, H. ; Wakahara, A. ; Ishiji, S. ; Moon, S.Y. ; Morisaki, Y.</creator><creatorcontrib>Furukawa, Y. ; Yonezu, H. ; Wakahara, A. ; Ishiji, S. ; Moon, S.Y. ; Morisaki, Y.</creatorcontrib><description>A Si/III–V-N/Si structure for optoelectronic integrated circuits (OEICs) was grown using a two-chamber molecular beam epitaxy (MBE) system to decrease a carrier concentration of Si epilayer for metal oxide field effect transistors (MOSFETs). At first, a GaP layer was grown by migration-enhanced epitaxy on a Si substrate. Two-dimensional growth mode was maintained, and self-annihilation of anti-phase domain was confirmed. The growth process was also identified from reflection high-energy electron diffraction patterns during the growth. Subsequently, an InGaPN/GaPN double-hetero light-emitting diode (LED) and a topmost Si layer were grown by the dislocation-free growth process. It was found that a carrier concentration of the topmost Si epilayer was decreased to 4.0–6.6×10 17 cm −3 from 3.0–6.7×10 18 cm −3 by using the two-chamber MBE system instead of a single-chamber MBE system. The carrier concentration could be adapted to the fabrication of MOSFETs. Finally, we have fabricated elemental devices on the Si/III–V-N/Si structure and obtained characteristics of pMOSFETs and LEDs successfully. It was confirmed that the two-chamber MBE system could be available to the realization of OEICs.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2006.11.021</identifier><identifier>CODEN: JCRGAE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A1. Growth models ; A3. Migration-enhanced epitaxy ; A3. Molecular beam epitaxy ; Applied sciences ; B1. Nitrides ; B2. Semiconducting gallium compounds ; B2. Semiconducting silicon ; Cross-disciplinary physics: materials science; rheology ; Electronics ; Exact sciences and technology ; Growth from vapor ; Materials science ; Methods of crystal growth; physics of crystal growth ; Methods of deposition of films and coatings; film growth and epitaxy ; Molecular, atomic, ion, and chemical beam epitaxy ; Optoelectronic devices ; Physics ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Theory and models of film growth</subject><ispartof>Journal of crystal growth, 2007-03, Vol.300 (1), p.172-176</ispartof><rights>2006 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-cbcf24e34f6c3719eeca3a6bebb18901ed629c625b166d2b570ed5aa39b05eb43</citedby><cites>FETCH-LOGICAL-c373t-cbcf24e34f6c3719eeca3a6bebb18901ed629c625b166d2b570ed5aa39b05eb43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022024806012139$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18633548$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Furukawa, Y.</creatorcontrib><creatorcontrib>Yonezu, H.</creatorcontrib><creatorcontrib>Wakahara, A.</creatorcontrib><creatorcontrib>Ishiji, S.</creatorcontrib><creatorcontrib>Moon, S.Y.</creatorcontrib><creatorcontrib>Morisaki, Y.</creatorcontrib><title>Growth of Si/III–V-N/Si structure with two-chamber molecular beam epitaxy system for optoelectronic integrated circuits</title><title>Journal of crystal growth</title><description>A Si/III–V-N/Si structure for optoelectronic integrated circuits (OEICs) was grown using a two-chamber molecular beam epitaxy (MBE) system to decrease a carrier concentration of Si epilayer for metal oxide field effect transistors (MOSFETs). At first, a GaP layer was grown by migration-enhanced epitaxy on a Si substrate. Two-dimensional growth mode was maintained, and self-annihilation of anti-phase domain was confirmed. The growth process was also identified from reflection high-energy electron diffraction patterns during the growth. Subsequently, an InGaPN/GaPN double-hetero light-emitting diode (LED) and a topmost Si layer were grown by the dislocation-free growth process. It was found that a carrier concentration of the topmost Si epilayer was decreased to 4.0–6.6×10 17 cm −3 from 3.0–6.7×10 18 cm −3 by using the two-chamber MBE system instead of a single-chamber MBE system. The carrier concentration could be adapted to the fabrication of MOSFETs. Finally, we have fabricated elemental devices on the Si/III–V-N/Si structure and obtained characteristics of pMOSFETs and LEDs successfully. It was confirmed that the two-chamber MBE system could be available to the realization of OEICs.</description><subject>A1. Growth models</subject><subject>A3. Migration-enhanced epitaxy</subject><subject>A3. Molecular beam epitaxy</subject><subject>Applied sciences</subject><subject>B1. Nitrides</subject><subject>B2. Semiconducting gallium compounds</subject><subject>B2. Semiconducting silicon</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Growth from vapor</subject><subject>Materials science</subject><subject>Methods of crystal growth; physics of crystal growth</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Molecular, atomic, ion, and chemical beam epitaxy</subject><subject>Optoelectronic devices</subject><subject>Physics</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Theory and models of film growth</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkM1u1DAURi0EEsOUV0DewC4Z_ySeZAeqoIxUtYvSbi3buWk9SuLh2mHIjnfoG_IkuJoilmx8Jet899M9hLzjrOSMq82-3Dtc4j2GUjCmSs5LJvgLsuLNVhY1Y-IlWeVXFExUzWvyJsY9YznJ2YosFxiO6YGGnt74zW63-_3r8a642tx4GhPOLs0I9OgzkY6hcA9mtIB0DAO4eTBILZiRwsEn83OhcYkJRtoHpOGQAmQoYZi8o35KcI8mQUedRzf7FM_Iq94MEd4-zzW5_fL52_nX4vL6Ynf-6bJwcitT4azrRQWy6lX-4C2AM9IoC9bypmUcOiVap0RtuVKdsPWWQVcbI1vLarCVXJMPp70HDN9niEmPPjoYBjNBmKMWbVMxlrvWRJ1AhyFGhF4f0I8GF82ZfjKt9_qvaf1kWnOus-kcfP_cYKIzQ49mcj7-SzdKyrpqMvfxxEE-94cH1NF5mBx0HrMp3QX_v6o_96yb6w</recordid><startdate>20070301</startdate><enddate>20070301</enddate><creator>Furukawa, Y.</creator><creator>Yonezu, H.</creator><creator>Wakahara, A.</creator><creator>Ishiji, S.</creator><creator>Moon, S.Y.</creator><creator>Morisaki, Y.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20070301</creationdate><title>Growth of Si/III–V-N/Si structure with two-chamber molecular beam epitaxy system for optoelectronic integrated circuits</title><author>Furukawa, Y. ; Yonezu, H. ; Wakahara, A. ; Ishiji, S. ; Moon, S.Y. ; Morisaki, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-cbcf24e34f6c3719eeca3a6bebb18901ed629c625b166d2b570ed5aa39b05eb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>A1. Growth models</topic><topic>A3. Migration-enhanced epitaxy</topic><topic>A3. Molecular beam epitaxy</topic><topic>Applied sciences</topic><topic>B1. Nitrides</topic><topic>B2. Semiconducting gallium compounds</topic><topic>B2. Semiconducting silicon</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Growth from vapor</topic><topic>Materials science</topic><topic>Methods of crystal growth; physics of crystal growth</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Molecular, atomic, ion, and chemical beam epitaxy</topic><topic>Optoelectronic devices</topic><topic>Physics</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Theory and models of film growth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Furukawa, Y.</creatorcontrib><creatorcontrib>Yonezu, H.</creatorcontrib><creatorcontrib>Wakahara, A.</creatorcontrib><creatorcontrib>Ishiji, S.</creatorcontrib><creatorcontrib>Moon, S.Y.</creatorcontrib><creatorcontrib>Morisaki, Y.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Furukawa, Y.</au><au>Yonezu, H.</au><au>Wakahara, A.</au><au>Ishiji, S.</au><au>Moon, S.Y.</au><au>Morisaki, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Growth of Si/III–V-N/Si structure with two-chamber molecular beam epitaxy system for optoelectronic integrated circuits</atitle><jtitle>Journal of crystal growth</jtitle><date>2007-03-01</date><risdate>2007</risdate><volume>300</volume><issue>1</issue><spage>172</spage><epage>176</epage><pages>172-176</pages><issn>0022-0248</issn><eissn>1873-5002</eissn><coden>JCRGAE</coden><abstract>A Si/III–V-N/Si structure for optoelectronic integrated circuits (OEICs) was grown using a two-chamber molecular beam epitaxy (MBE) system to decrease a carrier concentration of Si epilayer for metal oxide field effect transistors (MOSFETs). At first, a GaP layer was grown by migration-enhanced epitaxy on a Si substrate. Two-dimensional growth mode was maintained, and self-annihilation of anti-phase domain was confirmed. The growth process was also identified from reflection high-energy electron diffraction patterns during the growth. Subsequently, an InGaPN/GaPN double-hetero light-emitting diode (LED) and a topmost Si layer were grown by the dislocation-free growth process. It was found that a carrier concentration of the topmost Si epilayer was decreased to 4.0–6.6×10 17 cm −3 from 3.0–6.7×10 18 cm −3 by using the two-chamber MBE system instead of a single-chamber MBE system. The carrier concentration could be adapted to the fabrication of MOSFETs. Finally, we have fabricated elemental devices on the Si/III–V-N/Si structure and obtained characteristics of pMOSFETs and LEDs successfully. It was confirmed that the two-chamber MBE system could be available to the realization of OEICs.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2006.11.021</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-0248
ispartof Journal of crystal growth, 2007-03, Vol.300 (1), p.172-176
issn 0022-0248
1873-5002
language eng
recordid cdi_proquest_miscellaneous_29840037
source Elsevier ScienceDirect Journals
subjects A1. Growth models
A3. Migration-enhanced epitaxy
A3. Molecular beam epitaxy
Applied sciences
B1. Nitrides
B2. Semiconducting gallium compounds
B2. Semiconducting silicon
Cross-disciplinary physics: materials science
rheology
Electronics
Exact sciences and technology
Growth from vapor
Materials science
Methods of crystal growth
physics of crystal growth
Methods of deposition of films and coatings
film growth and epitaxy
Molecular, atomic, ion, and chemical beam epitaxy
Optoelectronic devices
Physics
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Theory and models of film growth
title Growth of Si/III–V-N/Si structure with two-chamber molecular beam epitaxy system for optoelectronic integrated circuits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A30%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Growth%20of%20Si/III%E2%80%93V-N/Si%20structure%20with%20two-chamber%20molecular%20beam%20epitaxy%20system%20for%20optoelectronic%20integrated%20circuits&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Furukawa,%20Y.&rft.date=2007-03-01&rft.volume=300&rft.issue=1&rft.spage=172&rft.epage=176&rft.pages=172-176&rft.issn=0022-0248&rft.eissn=1873-5002&rft.coden=JCRGAE&rft_id=info:doi/10.1016/j.jcrysgro.2006.11.021&rft_dat=%3Cproquest_cross%3E29840037%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29840037&rft_id=info:pmid/&rft_els_id=S0022024806012139&rfr_iscdi=true