Mechanical systems, equivalent in Lyapunov's sense to systems not containing non-conservative positional forces
Developing results obtained previously (Refs. Koshlyakov VN. Structural transformations of the equations of perturbed motion of a certain class of dynamical systems. Ukr Mat Zh 1997; 49 (4): 535–539; Koshlyakov VN. Structural transformations of dynamical systems with gyroscopic forces. Prikl Mat Mek...
Gespeichert in:
Veröffentlicht in: | Journal of applied mathematics and mechanics 2007, Vol.71 (1), p.10-19 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19 |
---|---|
container_issue | 1 |
container_start_page | 10 |
container_title | Journal of applied mathematics and mechanics |
container_volume | 71 |
creator | Koshlyakov, V.N. Makarov, V.L. |
description | Developing results obtained previously (Refs. Koshlyakov VN. Structural transformations of the equations of perturbed motion of a certain class of dynamical systems.
Ukr Mat Zh 1997; 49 (4): 535–539; Koshlyakov VN. Structural transformations of dynamical systems with gyroscopic forces.
Prikl Mat Mekh 1997; 61 (5): 774–780; Koshlyakov VN, Makarov VL. The theory of gyroscopic systems with non-conservative forces.
Prikl Mat Mekh 2001; 65 (4): 698–704; Koshlyakov VN, Makarov VL. The stability of non-conservative systems with degenerate matrices of dissipative forces.
Prikl Mat Mekh 2004; 68 (6): 906–913), the general problem of eliminating non-conservative positional structures from the second-order differential equation with constant matrix coefficients, obtained when modelling many mechanical systems, is considered. It is assumed that the matrices of the dissipative and non-conservative positional structures may, in particular, be degenerate. Under fairly general assumptions, theorems containing the necessary and sufficient conditions for a Lyapunov transformation to exist are proved. This converts the initial matrix equation to an equivalent autonomous form (in Lyapunov's sense) with a symmetrical matrix of the positional forces. An illustrative example is considered. |
doi_str_mv | 10.1016/j.jappmathmech.2007.03.009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29839978</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021892807000366</els_id><sourcerecordid>29839978</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-51cf2eae32aa086f46f4b630fdbad9e0bb35550e33b4d4c8b961e7120e0dcfdc3</originalsourceid><addsrcrecordid>eNqNkFGL1DAQx4soeJ5-hyCoL7ZOmm2b-iannsKKL_ocpunUy9ImvUy2sN_eHHviPR4MZAZ-8x_yK4rXEioJsv1wqA64rgumm4XsTVUDdBWoCqB_UlwA1LLUfa2fPuifFy-YDwCyg1ZfFOFH3kPvLM6CT5xo4feCbo9uw5l8Es6L_QnXow_bOxZMnkmk8A8VPiRhg0_ovPN_8ujLPDLFDZPbSKyBXXLB5_QpREv8sng24cz06v69LH5__fLr6lu5_3n9_erTvrRKN6lspJ1qQlI1Iuh22uUaWgXTOODYEwyDapoGSKlhN-6sHvpWUidrIBjtNFp1Wbw9564x3B6Jk1kcW5pn9BSObOpeq77vdAY_nkEbA3OkyazRLRhPRoK5c2wO5qFjc-fYgDLZcV5-c38FORucInrr-H-C7rpa9k3mPp85yl_eHEXD1pG3NLpINpkxuMec-wvFUZ1S</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29839978</pqid></control><display><type>article</type><title>Mechanical systems, equivalent in Lyapunov's sense to systems not containing non-conservative positional forces</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Koshlyakov, V.N. ; Makarov, V.L.</creator><creatorcontrib>Koshlyakov, V.N. ; Makarov, V.L.</creatorcontrib><description>Developing results obtained previously (Refs. Koshlyakov VN. Structural transformations of the equations of perturbed motion of a certain class of dynamical systems.
Ukr Mat Zh 1997; 49 (4): 535–539; Koshlyakov VN. Structural transformations of dynamical systems with gyroscopic forces.
Prikl Mat Mekh 1997; 61 (5): 774–780; Koshlyakov VN, Makarov VL. The theory of gyroscopic systems with non-conservative forces.
Prikl Mat Mekh 2001; 65 (4): 698–704; Koshlyakov VN, Makarov VL. The stability of non-conservative systems with degenerate matrices of dissipative forces.
Prikl Mat Mekh 2004; 68 (6): 906–913), the general problem of eliminating non-conservative positional structures from the second-order differential equation with constant matrix coefficients, obtained when modelling many mechanical systems, is considered. It is assumed that the matrices of the dissipative and non-conservative positional structures may, in particular, be degenerate. Under fairly general assumptions, theorems containing the necessary and sufficient conditions for a Lyapunov transformation to exist are proved. This converts the initial matrix equation to an equivalent autonomous form (in Lyapunov's sense) with a symmetrical matrix of the positional forces. An illustrative example is considered.</description><identifier>ISSN: 0021-8928</identifier><identifier>EISSN: 0021-8928</identifier><identifier>DOI: 10.1016/j.jappmathmech.2007.03.009</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Physics ; Solid dynamics (ballistics, collision, multibody system, stabilization...) ; Solid mechanics</subject><ispartof>Journal of applied mathematics and mechanics, 2007, Vol.71 (1), p.10-19</ispartof><rights>2007 Elsevier Ltd</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-51cf2eae32aa086f46f4b630fdbad9e0bb35550e33b4d4c8b961e7120e0dcfdc3</citedby><cites>FETCH-LOGICAL-c385t-51cf2eae32aa086f46f4b630fdbad9e0bb35550e33b4d4c8b961e7120e0dcfdc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021892807000366$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18772195$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Koshlyakov, V.N.</creatorcontrib><creatorcontrib>Makarov, V.L.</creatorcontrib><title>Mechanical systems, equivalent in Lyapunov's sense to systems not containing non-conservative positional forces</title><title>Journal of applied mathematics and mechanics</title><description>Developing results obtained previously (Refs. Koshlyakov VN. Structural transformations of the equations of perturbed motion of a certain class of dynamical systems.
Ukr Mat Zh 1997; 49 (4): 535–539; Koshlyakov VN. Structural transformations of dynamical systems with gyroscopic forces.
Prikl Mat Mekh 1997; 61 (5): 774–780; Koshlyakov VN, Makarov VL. The theory of gyroscopic systems with non-conservative forces.
Prikl Mat Mekh 2001; 65 (4): 698–704; Koshlyakov VN, Makarov VL. The stability of non-conservative systems with degenerate matrices of dissipative forces.
Prikl Mat Mekh 2004; 68 (6): 906–913), the general problem of eliminating non-conservative positional structures from the second-order differential equation with constant matrix coefficients, obtained when modelling many mechanical systems, is considered. It is assumed that the matrices of the dissipative and non-conservative positional structures may, in particular, be degenerate. Under fairly general assumptions, theorems containing the necessary and sufficient conditions for a Lyapunov transformation to exist are proved. This converts the initial matrix equation to an equivalent autonomous form (in Lyapunov's sense) with a symmetrical matrix of the positional forces. An illustrative example is considered.</description><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Solid dynamics (ballistics, collision, multibody system, stabilization...)</subject><subject>Solid mechanics</subject><issn>0021-8928</issn><issn>0021-8928</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqNkFGL1DAQx4soeJ5-hyCoL7ZOmm2b-iannsKKL_ocpunUy9ImvUy2sN_eHHviPR4MZAZ-8x_yK4rXEioJsv1wqA64rgumm4XsTVUDdBWoCqB_UlwA1LLUfa2fPuifFy-YDwCyg1ZfFOFH3kPvLM6CT5xo4feCbo9uw5l8Es6L_QnXow_bOxZMnkmk8A8VPiRhg0_ovPN_8ujLPDLFDZPbSKyBXXLB5_QpREv8sng24cz06v69LH5__fLr6lu5_3n9_erTvrRKN6lspJ1qQlI1Iuh22uUaWgXTOODYEwyDapoGSKlhN-6sHvpWUidrIBjtNFp1Wbw9564x3B6Jk1kcW5pn9BSObOpeq77vdAY_nkEbA3OkyazRLRhPRoK5c2wO5qFjc-fYgDLZcV5-c38FORucInrr-H-C7rpa9k3mPp85yl_eHEXD1pG3NLpINpkxuMec-wvFUZ1S</recordid><startdate>2007</startdate><enddate>2007</enddate><creator>Koshlyakov, V.N.</creator><creator>Makarov, V.L.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>2007</creationdate><title>Mechanical systems, equivalent in Lyapunov's sense to systems not containing non-conservative positional forces</title><author>Koshlyakov, V.N. ; Makarov, V.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-51cf2eae32aa086f46f4b630fdbad9e0bb35550e33b4d4c8b961e7120e0dcfdc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Solid dynamics (ballistics, collision, multibody system, stabilization...)</topic><topic>Solid mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koshlyakov, V.N.</creatorcontrib><creatorcontrib>Makarov, V.L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of applied mathematics and mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koshlyakov, V.N.</au><au>Makarov, V.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical systems, equivalent in Lyapunov's sense to systems not containing non-conservative positional forces</atitle><jtitle>Journal of applied mathematics and mechanics</jtitle><date>2007</date><risdate>2007</risdate><volume>71</volume><issue>1</issue><spage>10</spage><epage>19</epage><pages>10-19</pages><issn>0021-8928</issn><eissn>0021-8928</eissn><abstract>Developing results obtained previously (Refs. Koshlyakov VN. Structural transformations of the equations of perturbed motion of a certain class of dynamical systems.
Ukr Mat Zh 1997; 49 (4): 535–539; Koshlyakov VN. Structural transformations of dynamical systems with gyroscopic forces.
Prikl Mat Mekh 1997; 61 (5): 774–780; Koshlyakov VN, Makarov VL. The theory of gyroscopic systems with non-conservative forces.
Prikl Mat Mekh 2001; 65 (4): 698–704; Koshlyakov VN, Makarov VL. The stability of non-conservative systems with degenerate matrices of dissipative forces.
Prikl Mat Mekh 2004; 68 (6): 906–913), the general problem of eliminating non-conservative positional structures from the second-order differential equation with constant matrix coefficients, obtained when modelling many mechanical systems, is considered. It is assumed that the matrices of the dissipative and non-conservative positional structures may, in particular, be degenerate. Under fairly general assumptions, theorems containing the necessary and sufficient conditions for a Lyapunov transformation to exist are proved. This converts the initial matrix equation to an equivalent autonomous form (in Lyapunov's sense) with a symmetrical matrix of the positional forces. An illustrative example is considered.</abstract><cop>Oxford</cop><cop>New York, NY</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jappmathmech.2007.03.009</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8928 |
ispartof | Journal of applied mathematics and mechanics, 2007, Vol.71 (1), p.10-19 |
issn | 0021-8928 0021-8928 |
language | eng |
recordid | cdi_proquest_miscellaneous_29839978 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Exact sciences and technology Fundamental areas of phenomenology (including applications) Physics Solid dynamics (ballistics, collision, multibody system, stabilization...) Solid mechanics |
title | Mechanical systems, equivalent in Lyapunov's sense to systems not containing non-conservative positional forces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T13%3A50%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20systems,%20equivalent%20in%20Lyapunov's%20sense%20to%20systems%20not%20containing%20non-conservative%20positional%20forces&rft.jtitle=Journal%20of%20applied%20mathematics%20and%20mechanics&rft.au=Koshlyakov,%20V.N.&rft.date=2007&rft.volume=71&rft.issue=1&rft.spage=10&rft.epage=19&rft.pages=10-19&rft.issn=0021-8928&rft.eissn=0021-8928&rft_id=info:doi/10.1016/j.jappmathmech.2007.03.009&rft_dat=%3Cproquest_cross%3E29839978%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29839978&rft_id=info:pmid/&rft_els_id=S0021892807000366&rfr_iscdi=true |