Mechanical systems, equivalent in Lyapunov's sense to systems not containing non-conservative positional forces

Developing results obtained previously (Refs. Koshlyakov VN. Structural transformations of the equations of perturbed motion of a certain class of dynamical systems. Ukr Mat Zh 1997; 49 (4): 535–539; Koshlyakov VN. Structural transformations of dynamical systems with gyroscopic forces. Prikl Mat Mek...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied mathematics and mechanics 2007, Vol.71 (1), p.10-19
Hauptverfasser: Koshlyakov, V.N., Makarov, V.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19
container_issue 1
container_start_page 10
container_title Journal of applied mathematics and mechanics
container_volume 71
creator Koshlyakov, V.N.
Makarov, V.L.
description Developing results obtained previously (Refs. Koshlyakov VN. Structural transformations of the equations of perturbed motion of a certain class of dynamical systems. Ukr Mat Zh 1997; 49 (4): 535–539; Koshlyakov VN. Structural transformations of dynamical systems with gyroscopic forces. Prikl Mat Mekh 1997; 61 (5): 774–780; Koshlyakov VN, Makarov VL. The theory of gyroscopic systems with non-conservative forces. Prikl Mat Mekh 2001; 65 (4): 698–704; Koshlyakov VN, Makarov VL. The stability of non-conservative systems with degenerate matrices of dissipative forces. Prikl Mat Mekh 2004; 68 (6): 906–913), the general problem of eliminating non-conservative positional structures from the second-order differential equation with constant matrix coefficients, obtained when modelling many mechanical systems, is considered. It is assumed that the matrices of the dissipative and non-conservative positional structures may, in particular, be degenerate. Under fairly general assumptions, theorems containing the necessary and sufficient conditions for a Lyapunov transformation to exist are proved. This converts the initial matrix equation to an equivalent autonomous form (in Lyapunov's sense) with a symmetrical matrix of the positional forces. An illustrative example is considered.
doi_str_mv 10.1016/j.jappmathmech.2007.03.009
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29839978</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021892807000366</els_id><sourcerecordid>29839978</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-51cf2eae32aa086f46f4b630fdbad9e0bb35550e33b4d4c8b961e7120e0dcfdc3</originalsourceid><addsrcrecordid>eNqNkFGL1DAQx4soeJ5-hyCoL7ZOmm2b-iannsKKL_ocpunUy9ImvUy2sN_eHHviPR4MZAZ-8x_yK4rXEioJsv1wqA64rgumm4XsTVUDdBWoCqB_UlwA1LLUfa2fPuifFy-YDwCyg1ZfFOFH3kPvLM6CT5xo4feCbo9uw5l8Es6L_QnXow_bOxZMnkmk8A8VPiRhg0_ovPN_8ujLPDLFDZPbSKyBXXLB5_QpREv8sng24cz06v69LH5__fLr6lu5_3n9_erTvrRKN6lspJ1qQlI1Iuh22uUaWgXTOODYEwyDapoGSKlhN-6sHvpWUidrIBjtNFp1Wbw9564x3B6Jk1kcW5pn9BSObOpeq77vdAY_nkEbA3OkyazRLRhPRoK5c2wO5qFjc-fYgDLZcV5-c38FORucInrr-H-C7rpa9k3mPp85yl_eHEXD1pG3NLpINpkxuMec-wvFUZ1S</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29839978</pqid></control><display><type>article</type><title>Mechanical systems, equivalent in Lyapunov's sense to systems not containing non-conservative positional forces</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Koshlyakov, V.N. ; Makarov, V.L.</creator><creatorcontrib>Koshlyakov, V.N. ; Makarov, V.L.</creatorcontrib><description>Developing results obtained previously (Refs. Koshlyakov VN. Structural transformations of the equations of perturbed motion of a certain class of dynamical systems. Ukr Mat Zh 1997; 49 (4): 535–539; Koshlyakov VN. Structural transformations of dynamical systems with gyroscopic forces. Prikl Mat Mekh 1997; 61 (5): 774–780; Koshlyakov VN, Makarov VL. The theory of gyroscopic systems with non-conservative forces. Prikl Mat Mekh 2001; 65 (4): 698–704; Koshlyakov VN, Makarov VL. The stability of non-conservative systems with degenerate matrices of dissipative forces. Prikl Mat Mekh 2004; 68 (6): 906–913), the general problem of eliminating non-conservative positional structures from the second-order differential equation with constant matrix coefficients, obtained when modelling many mechanical systems, is considered. It is assumed that the matrices of the dissipative and non-conservative positional structures may, in particular, be degenerate. Under fairly general assumptions, theorems containing the necessary and sufficient conditions for a Lyapunov transformation to exist are proved. This converts the initial matrix equation to an equivalent autonomous form (in Lyapunov's sense) with a symmetrical matrix of the positional forces. An illustrative example is considered.</description><identifier>ISSN: 0021-8928</identifier><identifier>EISSN: 0021-8928</identifier><identifier>DOI: 10.1016/j.jappmathmech.2007.03.009</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Physics ; Solid dynamics (ballistics, collision, multibody system, stabilization...) ; Solid mechanics</subject><ispartof>Journal of applied mathematics and mechanics, 2007, Vol.71 (1), p.10-19</ispartof><rights>2007 Elsevier Ltd</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-51cf2eae32aa086f46f4b630fdbad9e0bb35550e33b4d4c8b961e7120e0dcfdc3</citedby><cites>FETCH-LOGICAL-c385t-51cf2eae32aa086f46f4b630fdbad9e0bb35550e33b4d4c8b961e7120e0dcfdc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021892807000366$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18772195$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Koshlyakov, V.N.</creatorcontrib><creatorcontrib>Makarov, V.L.</creatorcontrib><title>Mechanical systems, equivalent in Lyapunov's sense to systems not containing non-conservative positional forces</title><title>Journal of applied mathematics and mechanics</title><description>Developing results obtained previously (Refs. Koshlyakov VN. Structural transformations of the equations of perturbed motion of a certain class of dynamical systems. Ukr Mat Zh 1997; 49 (4): 535–539; Koshlyakov VN. Structural transformations of dynamical systems with gyroscopic forces. Prikl Mat Mekh 1997; 61 (5): 774–780; Koshlyakov VN, Makarov VL. The theory of gyroscopic systems with non-conservative forces. Prikl Mat Mekh 2001; 65 (4): 698–704; Koshlyakov VN, Makarov VL. The stability of non-conservative systems with degenerate matrices of dissipative forces. Prikl Mat Mekh 2004; 68 (6): 906–913), the general problem of eliminating non-conservative positional structures from the second-order differential equation with constant matrix coefficients, obtained when modelling many mechanical systems, is considered. It is assumed that the matrices of the dissipative and non-conservative positional structures may, in particular, be degenerate. Under fairly general assumptions, theorems containing the necessary and sufficient conditions for a Lyapunov transformation to exist are proved. This converts the initial matrix equation to an equivalent autonomous form (in Lyapunov's sense) with a symmetrical matrix of the positional forces. An illustrative example is considered.</description><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Solid dynamics (ballistics, collision, multibody system, stabilization...)</subject><subject>Solid mechanics</subject><issn>0021-8928</issn><issn>0021-8928</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqNkFGL1DAQx4soeJ5-hyCoL7ZOmm2b-iannsKKL_ocpunUy9ImvUy2sN_eHHviPR4MZAZ-8x_yK4rXEioJsv1wqA64rgumm4XsTVUDdBWoCqB_UlwA1LLUfa2fPuifFy-YDwCyg1ZfFOFH3kPvLM6CT5xo4feCbo9uw5l8Es6L_QnXow_bOxZMnkmk8A8VPiRhg0_ovPN_8ujLPDLFDZPbSKyBXXLB5_QpREv8sng24cz06v69LH5__fLr6lu5_3n9_erTvrRKN6lspJ1qQlI1Iuh22uUaWgXTOODYEwyDapoGSKlhN-6sHvpWUidrIBjtNFp1Wbw9564x3B6Jk1kcW5pn9BSObOpeq77vdAY_nkEbA3OkyazRLRhPRoK5c2wO5qFjc-fYgDLZcV5-c38FORucInrr-H-C7rpa9k3mPp85yl_eHEXD1pG3NLpINpkxuMec-wvFUZ1S</recordid><startdate>2007</startdate><enddate>2007</enddate><creator>Koshlyakov, V.N.</creator><creator>Makarov, V.L.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>2007</creationdate><title>Mechanical systems, equivalent in Lyapunov's sense to systems not containing non-conservative positional forces</title><author>Koshlyakov, V.N. ; Makarov, V.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-51cf2eae32aa086f46f4b630fdbad9e0bb35550e33b4d4c8b961e7120e0dcfdc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Solid dynamics (ballistics, collision, multibody system, stabilization...)</topic><topic>Solid mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koshlyakov, V.N.</creatorcontrib><creatorcontrib>Makarov, V.L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of applied mathematics and mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koshlyakov, V.N.</au><au>Makarov, V.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical systems, equivalent in Lyapunov's sense to systems not containing non-conservative positional forces</atitle><jtitle>Journal of applied mathematics and mechanics</jtitle><date>2007</date><risdate>2007</risdate><volume>71</volume><issue>1</issue><spage>10</spage><epage>19</epage><pages>10-19</pages><issn>0021-8928</issn><eissn>0021-8928</eissn><abstract>Developing results obtained previously (Refs. Koshlyakov VN. Structural transformations of the equations of perturbed motion of a certain class of dynamical systems. Ukr Mat Zh 1997; 49 (4): 535–539; Koshlyakov VN. Structural transformations of dynamical systems with gyroscopic forces. Prikl Mat Mekh 1997; 61 (5): 774–780; Koshlyakov VN, Makarov VL. The theory of gyroscopic systems with non-conservative forces. Prikl Mat Mekh 2001; 65 (4): 698–704; Koshlyakov VN, Makarov VL. The stability of non-conservative systems with degenerate matrices of dissipative forces. Prikl Mat Mekh 2004; 68 (6): 906–913), the general problem of eliminating non-conservative positional structures from the second-order differential equation with constant matrix coefficients, obtained when modelling many mechanical systems, is considered. It is assumed that the matrices of the dissipative and non-conservative positional structures may, in particular, be degenerate. Under fairly general assumptions, theorems containing the necessary and sufficient conditions for a Lyapunov transformation to exist are proved. This converts the initial matrix equation to an equivalent autonomous form (in Lyapunov's sense) with a symmetrical matrix of the positional forces. An illustrative example is considered.</abstract><cop>Oxford</cop><cop>New York, NY</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jappmathmech.2007.03.009</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8928
ispartof Journal of applied mathematics and mechanics, 2007, Vol.71 (1), p.10-19
issn 0021-8928
0021-8928
language eng
recordid cdi_proquest_miscellaneous_29839978
source Elsevier ScienceDirect Journals Complete
subjects Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Physics
Solid dynamics (ballistics, collision, multibody system, stabilization...)
Solid mechanics
title Mechanical systems, equivalent in Lyapunov's sense to systems not containing non-conservative positional forces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T13%3A50%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20systems,%20equivalent%20in%20Lyapunov's%20sense%20to%20systems%20not%20containing%20non-conservative%20positional%20forces&rft.jtitle=Journal%20of%20applied%20mathematics%20and%20mechanics&rft.au=Koshlyakov,%20V.N.&rft.date=2007&rft.volume=71&rft.issue=1&rft.spage=10&rft.epage=19&rft.pages=10-19&rft.issn=0021-8928&rft.eissn=0021-8928&rft_id=info:doi/10.1016/j.jappmathmech.2007.03.009&rft_dat=%3Cproquest_cross%3E29839978%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29839978&rft_id=info:pmid/&rft_els_id=S0021892807000366&rfr_iscdi=true