Denotational aspects of untyped normalization by evaluation

We show that the standard normalization-by-evaluation construction for the simply-typed λβη-calculus has a natural counterpart for the untyped λβ-calculus, with the central type-indexed logical relation replaced by a “recursively defined” invariant relation, in the style of Pitts. In fact, the const...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Informatique théorique et applications (Imprimé) 2005-07, Vol.39 (3), p.423-453
Hauptverfasser: Filinski, Andrzej, Rohde, Henning Korsholm
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 453
container_issue 3
container_start_page 423
container_title Informatique théorique et applications (Imprimé)
container_volume 39
creator Filinski, Andrzej
Rohde, Henning Korsholm
description We show that the standard normalization-by-evaluation construction for the simply-typed λβη-calculus has a natural counterpart for the untyped λβ-calculus, with the central type-indexed logical relation replaced by a “recursively defined” invariant relation, in the style of Pitts. In fact, the construction can be seen as generalizing a computational-adequacy argument for an untyped, call-by-name language to normalization instead of evaluation.In the untyped setting, not all terms have normal forms, so the normalization function is necessarily partial. We establish its correctness in the senses of soundness (the output term, if any, is in normal form and β-equivalent to the input term); identification (β-equivalent terms are mapped to the same result); and completeness (the function is defined for all terms that do have normal forms). We also show how the semantic construction enables a simple yet formal correctness proof for the normalization algorithm, expressed as a functional program in an ML-like, call-by-value language. Finally, we generalize the construction to produce an infinitary variant of normal forms, namely Böhm trees. We show that the three-part characterization of correctness, as well as the proofs, extend naturally to this generalization.
doi_str_mv 10.1051/ita:2005026
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29838375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29838375</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-51d4cfe8cd79f1c9d0b89acc434aac020561616e66140eb530027c3f927a5233</originalsourceid><addsrcrecordid>eNpFkE1PwzAMhiMEEmNw4g_0AhdUcJImTeCENsbXJA5MwC3y0lQqdO1IWsT49QQ2gX2wLD9-Lb-EHFI4pSDoWdXhOQMQwOQWGVCmIeVKvGyTAWilUp6LbJfshfAKADTGgFyMXdN22FVtg3WCYelsF5K2TPqmWy1dkTStX2Bdff0iyXyVuA-s-99un-yUWAd3sKlDMptczUY36fTh-nZ0OU0tl7pLBS0yWzpli1yX1OoC5kqjtRnPEC0wEJLGdFLSDNxccACWW15qlqNgnA_J8Vp26dv33oXOLKpgXV1j49o-GKYVV_G1CJ6sQevbELwrzdJXC_QrQ8H8-GOiP2bjT6SPNrIYLNalx8ZW4X9FaqlkriKXrrkqdO7zb47-zcg8njUKns1dfj95HD8xI_g3Fed0dA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29838375</pqid></control><display><type>article</type><title>Denotational aspects of untyped normalization by evaluation</title><source>NUMDAM</source><creator>Filinski, Andrzej ; Rohde, Henning Korsholm</creator><creatorcontrib>Filinski, Andrzej ; Rohde, Henning Korsholm</creatorcontrib><description>We show that the standard normalization-by-evaluation construction for the simply-typed λβη-calculus has a natural counterpart for the untyped λβ-calculus, with the central type-indexed logical relation replaced by a “recursively defined” invariant relation, in the style of Pitts. In fact, the construction can be seen as generalizing a computational-adequacy argument for an untyped, call-by-name language to normalization instead of evaluation.In the untyped setting, not all terms have normal forms, so the normalization function is necessarily partial. We establish its correctness in the senses of soundness (the output term, if any, is in normal form and β-equivalent to the input term); identification (β-equivalent terms are mapped to the same result); and completeness (the function is defined for all terms that do have normal forms). We also show how the semantic construction enables a simple yet formal correctness proof for the normalization algorithm, expressed as a functional program in an ML-like, call-by-value language. Finally, we generalize the construction to produce an infinitary variant of normal forms, namely Böhm trees. We show that the three-part characterization of correctness, as well as the proofs, extend naturally to this generalization.</description><identifier>ISSN: 0988-3754</identifier><identifier>EISSN: 1290-385X</identifier><identifier>DOI: 10.1051/ita:2005026</identifier><identifier>CODEN: RITAE4</identifier><language>eng</language><publisher>Paris: EDP Sciences</publisher><subject>03B40 ; 06B35 ; 68N18 ; 68Q55 ; Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Böhm trees ; Combinatorics. Ordered structures ; computational adequacy ; Computer science; control theory; systems ; denotational semantics ; Exact sciences and technology ; functional programming ; Mathematics ; Normalization by evaluation ; Order, lattices, ordered algebraic structures ; Sciences and techniques of general use ; Software ; Software engineering ; Theoretical computing ; untyped λ-calculus</subject><ispartof>Informatique théorique et applications (Imprimé), 2005-07, Vol.39 (3), p.423-453</ispartof><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-51d4cfe8cd79f1c9d0b89acc434aac020561616e66140eb530027c3f927a5233</citedby><cites>FETCH-LOGICAL-c369t-51d4cfe8cd79f1c9d0b89acc434aac020561616e66140eb530027c3f927a5233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16968678$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Filinski, Andrzej</creatorcontrib><creatorcontrib>Rohde, Henning Korsholm</creatorcontrib><title>Denotational aspects of untyped normalization by evaluation</title><title>Informatique théorique et applications (Imprimé)</title><description>We show that the standard normalization-by-evaluation construction for the simply-typed λβη-calculus has a natural counterpart for the untyped λβ-calculus, with the central type-indexed logical relation replaced by a “recursively defined” invariant relation, in the style of Pitts. In fact, the construction can be seen as generalizing a computational-adequacy argument for an untyped, call-by-name language to normalization instead of evaluation.In the untyped setting, not all terms have normal forms, so the normalization function is necessarily partial. We establish its correctness in the senses of soundness (the output term, if any, is in normal form and β-equivalent to the input term); identification (β-equivalent terms are mapped to the same result); and completeness (the function is defined for all terms that do have normal forms). We also show how the semantic construction enables a simple yet formal correctness proof for the normalization algorithm, expressed as a functional program in an ML-like, call-by-value language. Finally, we generalize the construction to produce an infinitary variant of normal forms, namely Böhm trees. We show that the three-part characterization of correctness, as well as the proofs, extend naturally to this generalization.</description><subject>03B40</subject><subject>06B35</subject><subject>68N18</subject><subject>68Q55</subject><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Böhm trees</subject><subject>Combinatorics. Ordered structures</subject><subject>computational adequacy</subject><subject>Computer science; control theory; systems</subject><subject>denotational semantics</subject><subject>Exact sciences and technology</subject><subject>functional programming</subject><subject>Mathematics</subject><subject>Normalization by evaluation</subject><subject>Order, lattices, ordered algebraic structures</subject><subject>Sciences and techniques of general use</subject><subject>Software</subject><subject>Software engineering</subject><subject>Theoretical computing</subject><subject>untyped λ-calculus</subject><issn>0988-3754</issn><issn>1290-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNpFkE1PwzAMhiMEEmNw4g_0AhdUcJImTeCENsbXJA5MwC3y0lQqdO1IWsT49QQ2gX2wLD9-Lb-EHFI4pSDoWdXhOQMQwOQWGVCmIeVKvGyTAWilUp6LbJfshfAKADTGgFyMXdN22FVtg3WCYelsF5K2TPqmWy1dkTStX2Bdff0iyXyVuA-s-99un-yUWAd3sKlDMptczUY36fTh-nZ0OU0tl7pLBS0yWzpli1yX1OoC5kqjtRnPEC0wEJLGdFLSDNxccACWW15qlqNgnA_J8Vp26dv33oXOLKpgXV1j49o-GKYVV_G1CJ6sQevbELwrzdJXC_QrQ8H8-GOiP2bjT6SPNrIYLNalx8ZW4X9FaqlkriKXrrkqdO7zb47-zcg8njUKns1dfj95HD8xI_g3Fed0dA</recordid><startdate>20050701</startdate><enddate>20050701</enddate><creator>Filinski, Andrzej</creator><creator>Rohde, Henning Korsholm</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20050701</creationdate><title>Denotational aspects of untyped normalization by evaluation</title><author>Filinski, Andrzej ; Rohde, Henning Korsholm</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-51d4cfe8cd79f1c9d0b89acc434aac020561616e66140eb530027c3f927a5233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>03B40</topic><topic>06B35</topic><topic>68N18</topic><topic>68Q55</topic><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Böhm trees</topic><topic>Combinatorics. Ordered structures</topic><topic>computational adequacy</topic><topic>Computer science; control theory; systems</topic><topic>denotational semantics</topic><topic>Exact sciences and technology</topic><topic>functional programming</topic><topic>Mathematics</topic><topic>Normalization by evaluation</topic><topic>Order, lattices, ordered algebraic structures</topic><topic>Sciences and techniques of general use</topic><topic>Software</topic><topic>Software engineering</topic><topic>Theoretical computing</topic><topic>untyped λ-calculus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Filinski, Andrzej</creatorcontrib><creatorcontrib>Rohde, Henning Korsholm</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Informatique théorique et applications (Imprimé)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Filinski, Andrzej</au><au>Rohde, Henning Korsholm</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Denotational aspects of untyped normalization by evaluation</atitle><jtitle>Informatique théorique et applications (Imprimé)</jtitle><date>2005-07-01</date><risdate>2005</risdate><volume>39</volume><issue>3</issue><spage>423</spage><epage>453</epage><pages>423-453</pages><issn>0988-3754</issn><eissn>1290-385X</eissn><coden>RITAE4</coden><abstract>We show that the standard normalization-by-evaluation construction for the simply-typed λβη-calculus has a natural counterpart for the untyped λβ-calculus, with the central type-indexed logical relation replaced by a “recursively defined” invariant relation, in the style of Pitts. In fact, the construction can be seen as generalizing a computational-adequacy argument for an untyped, call-by-name language to normalization instead of evaluation.In the untyped setting, not all terms have normal forms, so the normalization function is necessarily partial. We establish its correctness in the senses of soundness (the output term, if any, is in normal form and β-equivalent to the input term); identification (β-equivalent terms are mapped to the same result); and completeness (the function is defined for all terms that do have normal forms). We also show how the semantic construction enables a simple yet formal correctness proof for the normalization algorithm, expressed as a functional program in an ML-like, call-by-value language. Finally, we generalize the construction to produce an infinitary variant of normal forms, namely Böhm trees. We show that the three-part characterization of correctness, as well as the proofs, extend naturally to this generalization.</abstract><cop>Paris</cop><pub>EDP Sciences</pub><doi>10.1051/ita:2005026</doi><tpages>31</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0988-3754
ispartof Informatique théorique et applications (Imprimé), 2005-07, Vol.39 (3), p.423-453
issn 0988-3754
1290-385X
language eng
recordid cdi_proquest_miscellaneous_29838375
source NUMDAM
subjects 03B40
06B35
68N18
68Q55
Algorithmics. Computability. Computer arithmetics
Applied sciences
Böhm trees
Combinatorics. Ordered structures
computational adequacy
Computer science
control theory
systems
denotational semantics
Exact sciences and technology
functional programming
Mathematics
Normalization by evaluation
Order, lattices, ordered algebraic structures
Sciences and techniques of general use
Software
Software engineering
Theoretical computing
untyped λ-calculus
title Denotational aspects of untyped normalization by evaluation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A01%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Denotational%20aspects%20of%20untyped%20normalization%20by%20evaluation&rft.jtitle=Informatique%20th%C3%A9orique%20et%20applications%20(Imprim%C3%A9)&rft.au=Filinski,%20Andrzej&rft.date=2005-07-01&rft.volume=39&rft.issue=3&rft.spage=423&rft.epage=453&rft.pages=423-453&rft.issn=0988-3754&rft.eissn=1290-385X&rft.coden=RITAE4&rft_id=info:doi/10.1051/ita:2005026&rft_dat=%3Cproquest_cross%3E29838375%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29838375&rft_id=info:pmid/&rfr_iscdi=true