Denotational aspects of untyped normalization by evaluation
We show that the standard normalization-by-evaluation construction for the simply-typed λβη-calculus has a natural counterpart for the untyped λβ-calculus, with the central type-indexed logical relation replaced by a “recursively defined” invariant relation, in the style of Pitts. In fact, the const...
Gespeichert in:
Veröffentlicht in: | Informatique théorique et applications (Imprimé) 2005-07, Vol.39 (3), p.423-453 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 453 |
---|---|
container_issue | 3 |
container_start_page | 423 |
container_title | Informatique théorique et applications (Imprimé) |
container_volume | 39 |
creator | Filinski, Andrzej Rohde, Henning Korsholm |
description | We show that the standard normalization-by-evaluation construction for the simply-typed λβη-calculus has a natural counterpart for the untyped λβ-calculus, with the central type-indexed logical relation replaced by a “recursively defined” invariant relation, in the style of Pitts. In fact, the construction can be seen as generalizing a computational-adequacy argument for an untyped, call-by-name language to normalization instead of evaluation.In the untyped setting, not all terms have normal forms, so the normalization function is necessarily partial. We establish its correctness in the senses of soundness (the output term, if any, is in normal form and β-equivalent to the input term); identification (β-equivalent terms are mapped to the same result); and completeness (the function is defined for all terms that do have normal forms). We also show how the semantic construction enables a simple yet formal correctness proof for the normalization algorithm, expressed as a functional program in an ML-like, call-by-value language. Finally, we generalize the construction to produce an infinitary variant of normal forms, namely Böhm trees. We show that the three-part characterization of correctness, as well as the proofs, extend naturally to this generalization. |
doi_str_mv | 10.1051/ita:2005026 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29838375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29838375</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-51d4cfe8cd79f1c9d0b89acc434aac020561616e66140eb530027c3f927a5233</originalsourceid><addsrcrecordid>eNpFkE1PwzAMhiMEEmNw4g_0AhdUcJImTeCENsbXJA5MwC3y0lQqdO1IWsT49QQ2gX2wLD9-Lb-EHFI4pSDoWdXhOQMQwOQWGVCmIeVKvGyTAWilUp6LbJfshfAKADTGgFyMXdN22FVtg3WCYelsF5K2TPqmWy1dkTStX2Bdff0iyXyVuA-s-99un-yUWAd3sKlDMptczUY36fTh-nZ0OU0tl7pLBS0yWzpli1yX1OoC5kqjtRnPEC0wEJLGdFLSDNxccACWW15qlqNgnA_J8Vp26dv33oXOLKpgXV1j49o-GKYVV_G1CJ6sQevbELwrzdJXC_QrQ8H8-GOiP2bjT6SPNrIYLNalx8ZW4X9FaqlkriKXrrkqdO7zb47-zcg8njUKns1dfj95HD8xI_g3Fed0dA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29838375</pqid></control><display><type>article</type><title>Denotational aspects of untyped normalization by evaluation</title><source>NUMDAM</source><creator>Filinski, Andrzej ; Rohde, Henning Korsholm</creator><creatorcontrib>Filinski, Andrzej ; Rohde, Henning Korsholm</creatorcontrib><description>We show that the standard normalization-by-evaluation construction for the simply-typed λβη-calculus has a natural counterpart for the untyped λβ-calculus, with the central type-indexed logical relation replaced by a “recursively defined” invariant relation, in the style of Pitts. In fact, the construction can be seen as generalizing a computational-adequacy argument for an untyped, call-by-name language to normalization instead of evaluation.In the untyped setting, not all terms have normal forms, so the normalization function is necessarily partial. We establish its correctness in the senses of soundness (the output term, if any, is in normal form and β-equivalent to the input term); identification (β-equivalent terms are mapped to the same result); and completeness (the function is defined for all terms that do have normal forms). We also show how the semantic construction enables a simple yet formal correctness proof for the normalization algorithm, expressed as a functional program in an ML-like, call-by-value language. Finally, we generalize the construction to produce an infinitary variant of normal forms, namely Böhm trees. We show that the three-part characterization of correctness, as well as the proofs, extend naturally to this generalization.</description><identifier>ISSN: 0988-3754</identifier><identifier>EISSN: 1290-385X</identifier><identifier>DOI: 10.1051/ita:2005026</identifier><identifier>CODEN: RITAE4</identifier><language>eng</language><publisher>Paris: EDP Sciences</publisher><subject>03B40 ; 06B35 ; 68N18 ; 68Q55 ; Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Böhm trees ; Combinatorics. Ordered structures ; computational adequacy ; Computer science; control theory; systems ; denotational semantics ; Exact sciences and technology ; functional programming ; Mathematics ; Normalization by evaluation ; Order, lattices, ordered algebraic structures ; Sciences and techniques of general use ; Software ; Software engineering ; Theoretical computing ; untyped λ-calculus</subject><ispartof>Informatique théorique et applications (Imprimé), 2005-07, Vol.39 (3), p.423-453</ispartof><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-51d4cfe8cd79f1c9d0b89acc434aac020561616e66140eb530027c3f927a5233</citedby><cites>FETCH-LOGICAL-c369t-51d4cfe8cd79f1c9d0b89acc434aac020561616e66140eb530027c3f927a5233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16968678$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Filinski, Andrzej</creatorcontrib><creatorcontrib>Rohde, Henning Korsholm</creatorcontrib><title>Denotational aspects of untyped normalization by evaluation</title><title>Informatique théorique et applications (Imprimé)</title><description>We show that the standard normalization-by-evaluation construction for the simply-typed λβη-calculus has a natural counterpart for the untyped λβ-calculus, with the central type-indexed logical relation replaced by a “recursively defined” invariant relation, in the style of Pitts. In fact, the construction can be seen as generalizing a computational-adequacy argument for an untyped, call-by-name language to normalization instead of evaluation.In the untyped setting, not all terms have normal forms, so the normalization function is necessarily partial. We establish its correctness in the senses of soundness (the output term, if any, is in normal form and β-equivalent to the input term); identification (β-equivalent terms are mapped to the same result); and completeness (the function is defined for all terms that do have normal forms). We also show how the semantic construction enables a simple yet formal correctness proof for the normalization algorithm, expressed as a functional program in an ML-like, call-by-value language. Finally, we generalize the construction to produce an infinitary variant of normal forms, namely Böhm trees. We show that the three-part characterization of correctness, as well as the proofs, extend naturally to this generalization.</description><subject>03B40</subject><subject>06B35</subject><subject>68N18</subject><subject>68Q55</subject><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Böhm trees</subject><subject>Combinatorics. Ordered structures</subject><subject>computational adequacy</subject><subject>Computer science; control theory; systems</subject><subject>denotational semantics</subject><subject>Exact sciences and technology</subject><subject>functional programming</subject><subject>Mathematics</subject><subject>Normalization by evaluation</subject><subject>Order, lattices, ordered algebraic structures</subject><subject>Sciences and techniques of general use</subject><subject>Software</subject><subject>Software engineering</subject><subject>Theoretical computing</subject><subject>untyped λ-calculus</subject><issn>0988-3754</issn><issn>1290-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNpFkE1PwzAMhiMEEmNw4g_0AhdUcJImTeCENsbXJA5MwC3y0lQqdO1IWsT49QQ2gX2wLD9-Lb-EHFI4pSDoWdXhOQMQwOQWGVCmIeVKvGyTAWilUp6LbJfshfAKADTGgFyMXdN22FVtg3WCYelsF5K2TPqmWy1dkTStX2Bdff0iyXyVuA-s-99un-yUWAd3sKlDMptczUY36fTh-nZ0OU0tl7pLBS0yWzpli1yX1OoC5kqjtRnPEC0wEJLGdFLSDNxccACWW15qlqNgnA_J8Vp26dv33oXOLKpgXV1j49o-GKYVV_G1CJ6sQevbELwrzdJXC_QrQ8H8-GOiP2bjT6SPNrIYLNalx8ZW4X9FaqlkriKXrrkqdO7zb47-zcg8njUKns1dfj95HD8xI_g3Fed0dA</recordid><startdate>20050701</startdate><enddate>20050701</enddate><creator>Filinski, Andrzej</creator><creator>Rohde, Henning Korsholm</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20050701</creationdate><title>Denotational aspects of untyped normalization by evaluation</title><author>Filinski, Andrzej ; Rohde, Henning Korsholm</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-51d4cfe8cd79f1c9d0b89acc434aac020561616e66140eb530027c3f927a5233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>03B40</topic><topic>06B35</topic><topic>68N18</topic><topic>68Q55</topic><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Böhm trees</topic><topic>Combinatorics. Ordered structures</topic><topic>computational adequacy</topic><topic>Computer science; control theory; systems</topic><topic>denotational semantics</topic><topic>Exact sciences and technology</topic><topic>functional programming</topic><topic>Mathematics</topic><topic>Normalization by evaluation</topic><topic>Order, lattices, ordered algebraic structures</topic><topic>Sciences and techniques of general use</topic><topic>Software</topic><topic>Software engineering</topic><topic>Theoretical computing</topic><topic>untyped λ-calculus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Filinski, Andrzej</creatorcontrib><creatorcontrib>Rohde, Henning Korsholm</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Informatique théorique et applications (Imprimé)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Filinski, Andrzej</au><au>Rohde, Henning Korsholm</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Denotational aspects of untyped normalization by evaluation</atitle><jtitle>Informatique théorique et applications (Imprimé)</jtitle><date>2005-07-01</date><risdate>2005</risdate><volume>39</volume><issue>3</issue><spage>423</spage><epage>453</epage><pages>423-453</pages><issn>0988-3754</issn><eissn>1290-385X</eissn><coden>RITAE4</coden><abstract>We show that the standard normalization-by-evaluation construction for the simply-typed λβη-calculus has a natural counterpart for the untyped λβ-calculus, with the central type-indexed logical relation replaced by a “recursively defined” invariant relation, in the style of Pitts. In fact, the construction can be seen as generalizing a computational-adequacy argument for an untyped, call-by-name language to normalization instead of evaluation.In the untyped setting, not all terms have normal forms, so the normalization function is necessarily partial. We establish its correctness in the senses of soundness (the output term, if any, is in normal form and β-equivalent to the input term); identification (β-equivalent terms are mapped to the same result); and completeness (the function is defined for all terms that do have normal forms). We also show how the semantic construction enables a simple yet formal correctness proof for the normalization algorithm, expressed as a functional program in an ML-like, call-by-value language. Finally, we generalize the construction to produce an infinitary variant of normal forms, namely Böhm trees. We show that the three-part characterization of correctness, as well as the proofs, extend naturally to this generalization.</abstract><cop>Paris</cop><pub>EDP Sciences</pub><doi>10.1051/ita:2005026</doi><tpages>31</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0988-3754 |
ispartof | Informatique théorique et applications (Imprimé), 2005-07, Vol.39 (3), p.423-453 |
issn | 0988-3754 1290-385X |
language | eng |
recordid | cdi_proquest_miscellaneous_29838375 |
source | NUMDAM |
subjects | 03B40 06B35 68N18 68Q55 Algorithmics. Computability. Computer arithmetics Applied sciences Böhm trees Combinatorics. Ordered structures computational adequacy Computer science control theory systems denotational semantics Exact sciences and technology functional programming Mathematics Normalization by evaluation Order, lattices, ordered algebraic structures Sciences and techniques of general use Software Software engineering Theoretical computing untyped λ-calculus |
title | Denotational aspects of untyped normalization by evaluation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A01%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Denotational%20aspects%20of%20untyped%20normalization%20by%20evaluation&rft.jtitle=Informatique%20th%C3%A9orique%20et%20applications%20(Imprim%C3%A9)&rft.au=Filinski,%20Andrzej&rft.date=2005-07-01&rft.volume=39&rft.issue=3&rft.spage=423&rft.epage=453&rft.pages=423-453&rft.issn=0988-3754&rft.eissn=1290-385X&rft.coden=RITAE4&rft_id=info:doi/10.1051/ita:2005026&rft_dat=%3Cproquest_cross%3E29838375%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29838375&rft_id=info:pmid/&rfr_iscdi=true |