Ekeland’s principle for vector equilibrium problems

In this paper, the authors deal with bifunctions defined on complete metric spaces and with values in locally convex spaces ordered by closed convex cones. The aim is to provide a vector version of Ekeland’s theorem related to equilibrium problems. To prove this principle, a weak notion of continuit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2007-04, Vol.66 (7), p.1454-1464
Hauptverfasser: Bianchi, M., Kassay, G., Pini, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1464
container_issue 7
container_start_page 1454
container_title Nonlinear analysis
container_volume 66
creator Bianchi, M.
Kassay, G.
Pini, R.
description In this paper, the authors deal with bifunctions defined on complete metric spaces and with values in locally convex spaces ordered by closed convex cones. The aim is to provide a vector version of Ekeland’s theorem related to equilibrium problems. To prove this principle, a weak notion of continuity of a vector-valued function is considered, and some of its properties are presented. Via the vector Ekeland’s principle, existence results for vector equilibria are proved in both compact and noncompact domains.
doi_str_mv 10.1016/j.na.2006.02.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29837313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X06000794</els_id><sourcerecordid>29837313</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-4dcac78092a7570661950102117a1800e3132ab68527945af870785f38e363ee3</originalsourceid><addsrcrecordid>eNp1kL1OAzEQhC0EEiHQU6aB7o61Hf8cHYrCjxSJBiQ6y_HtSQ6-u8TORaLjNXg9ngRHQaKi2uabmZ0h5JJCSYHKm1XZ2ZIByBJYCcCPyIhqxQvBqDgmI-CSFWIq307JWUorAKCKyxER83cMtqu_P7_SZB195_w64KTp42SHbpsPbgYf_DL6oc1AvwzYpnNy0tiQ8OL3jsnr_fxl9lgsnh-eZneLwnEhtsW0dtYpDRWzSiiQklYCKDBKlaUaADnlzC6lFkxVU2EbrUBp0XCNXHJEPibXB98cvBkwbU3rk8OQP8Z-SIZVmqtskkE4gC72KUVsTO7S2vhhKJj9PmZlOmv2-xhgJu-TJVe_3jY5G5poc_f0p9NCVbKSmbs9cJiL7jxGk5zHzmHtY17I1L3_P-QHiWR4qA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29837313</pqid></control><display><type>article</type><title>Ekeland’s principle for vector equilibrium problems</title><source>Access via ScienceDirect (Elsevier)</source><creator>Bianchi, M. ; Kassay, G. ; Pini, R.</creator><creatorcontrib>Bianchi, M. ; Kassay, G. ; Pini, R.</creatorcontrib><description>In this paper, the authors deal with bifunctions defined on complete metric spaces and with values in locally convex spaces ordered by closed convex cones. The aim is to provide a vector version of Ekeland’s theorem related to equilibrium problems. To prove this principle, a weak notion of continuity of a vector-valued function is considered, and some of its properties are presented. Via the vector Ekeland’s principle, existence results for vector equilibria are proved in both compact and noncompact domains.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2006.02.003</identifier><identifier>CODEN: NOANDD</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Calculus of variations and optimal control ; Ekeland’s principle ; Exact sciences and technology ; Global analysis, analysis on manifolds ; Mathematical analysis ; Mathematics ; Quasi lower semicontinuity ; Sciences and techniques of general use ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds ; Vector equilibrium problem</subject><ispartof>Nonlinear analysis, 2007-04, Vol.66 (7), p.1454-1464</ispartof><rights>2006 Elsevier Ltd</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-4dcac78092a7570661950102117a1800e3132ab68527945af870785f38e363ee3</citedby><cites>FETCH-LOGICAL-c355t-4dcac78092a7570661950102117a1800e3132ab68527945af870785f38e363ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.na.2006.02.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18579696$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bianchi, M.</creatorcontrib><creatorcontrib>Kassay, G.</creatorcontrib><creatorcontrib>Pini, R.</creatorcontrib><title>Ekeland’s principle for vector equilibrium problems</title><title>Nonlinear analysis</title><description>In this paper, the authors deal with bifunctions defined on complete metric spaces and with values in locally convex spaces ordered by closed convex cones. The aim is to provide a vector version of Ekeland’s theorem related to equilibrium problems. To prove this principle, a weak notion of continuity of a vector-valued function is considered, and some of its properties are presented. Via the vector Ekeland’s principle, existence results for vector equilibria are proved in both compact and noncompact domains.</description><subject>Calculus of variations and optimal control</subject><subject>Ekeland’s principle</subject><subject>Exact sciences and technology</subject><subject>Global analysis, analysis on manifolds</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Quasi lower semicontinuity</subject><subject>Sciences and techniques of general use</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><subject>Vector equilibrium problem</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OAzEQhC0EEiHQU6aB7o61Hf8cHYrCjxSJBiQ6y_HtSQ6-u8TORaLjNXg9ngRHQaKi2uabmZ0h5JJCSYHKm1XZ2ZIByBJYCcCPyIhqxQvBqDgmI-CSFWIq307JWUorAKCKyxER83cMtqu_P7_SZB195_w64KTp42SHbpsPbgYf_DL6oc1AvwzYpnNy0tiQ8OL3jsnr_fxl9lgsnh-eZneLwnEhtsW0dtYpDRWzSiiQklYCKDBKlaUaADnlzC6lFkxVU2EbrUBp0XCNXHJEPibXB98cvBkwbU3rk8OQP8Z-SIZVmqtskkE4gC72KUVsTO7S2vhhKJj9PmZlOmv2-xhgJu-TJVe_3jY5G5poc_f0p9NCVbKSmbs9cJiL7jxGk5zHzmHtY17I1L3_P-QHiWR4qA</recordid><startdate>20070401</startdate><enddate>20070401</enddate><creator>Bianchi, M.</creator><creator>Kassay, G.</creator><creator>Pini, R.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20070401</creationdate><title>Ekeland’s principle for vector equilibrium problems</title><author>Bianchi, M. ; Kassay, G. ; Pini, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-4dcac78092a7570661950102117a1800e3132ab68527945af870785f38e363ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Calculus of variations and optimal control</topic><topic>Ekeland’s principle</topic><topic>Exact sciences and technology</topic><topic>Global analysis, analysis on manifolds</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Quasi lower semicontinuity</topic><topic>Sciences and techniques of general use</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><topic>Vector equilibrium problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bianchi, M.</creatorcontrib><creatorcontrib>Kassay, G.</creatorcontrib><creatorcontrib>Pini, R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bianchi, M.</au><au>Kassay, G.</au><au>Pini, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ekeland’s principle for vector equilibrium problems</atitle><jtitle>Nonlinear analysis</jtitle><date>2007-04-01</date><risdate>2007</risdate><volume>66</volume><issue>7</issue><spage>1454</spage><epage>1464</epage><pages>1454-1464</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><coden>NOANDD</coden><abstract>In this paper, the authors deal with bifunctions defined on complete metric spaces and with values in locally convex spaces ordered by closed convex cones. The aim is to provide a vector version of Ekeland’s theorem related to equilibrium problems. To prove this principle, a weak notion of continuity of a vector-valued function is considered, and some of its properties are presented. Via the vector Ekeland’s principle, existence results for vector equilibria are proved in both compact and noncompact domains.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2006.02.003</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0362-546X
ispartof Nonlinear analysis, 2007-04, Vol.66 (7), p.1454-1464
issn 0362-546X
1873-5215
language eng
recordid cdi_proquest_miscellaneous_29837313
source Access via ScienceDirect (Elsevier)
subjects Calculus of variations and optimal control
Ekeland’s principle
Exact sciences and technology
Global analysis, analysis on manifolds
Mathematical analysis
Mathematics
Quasi lower semicontinuity
Sciences and techniques of general use
Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds
Vector equilibrium problem
title Ekeland’s principle for vector equilibrium problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T18%3A38%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ekeland%E2%80%99s%20principle%20for%20vector%20equilibrium%20problems&rft.jtitle=Nonlinear%20analysis&rft.au=Bianchi,%20M.&rft.date=2007-04-01&rft.volume=66&rft.issue=7&rft.spage=1454&rft.epage=1464&rft.pages=1454-1464&rft.issn=0362-546X&rft.eissn=1873-5215&rft.coden=NOANDD&rft_id=info:doi/10.1016/j.na.2006.02.003&rft_dat=%3Cproquest_cross%3E29837313%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29837313&rft_id=info:pmid/&rft_els_id=S0362546X06000794&rfr_iscdi=true