Ekeland’s principle for vector equilibrium problems
In this paper, the authors deal with bifunctions defined on complete metric spaces and with values in locally convex spaces ordered by closed convex cones. The aim is to provide a vector version of Ekeland’s theorem related to equilibrium problems. To prove this principle, a weak notion of continuit...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2007-04, Vol.66 (7), p.1454-1464 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1464 |
---|---|
container_issue | 7 |
container_start_page | 1454 |
container_title | Nonlinear analysis |
container_volume | 66 |
creator | Bianchi, M. Kassay, G. Pini, R. |
description | In this paper, the authors deal with bifunctions defined on complete metric spaces and with values in locally convex spaces ordered by closed convex cones. The aim is to provide a vector version of Ekeland’s theorem related to equilibrium problems. To prove this principle, a weak notion of continuity of a vector-valued function is considered, and some of its properties are presented. Via the vector Ekeland’s principle, existence results for vector equilibria are proved in both compact and noncompact domains. |
doi_str_mv | 10.1016/j.na.2006.02.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29837313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X06000794</els_id><sourcerecordid>29837313</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-4dcac78092a7570661950102117a1800e3132ab68527945af870785f38e363ee3</originalsourceid><addsrcrecordid>eNp1kL1OAzEQhC0EEiHQU6aB7o61Hf8cHYrCjxSJBiQ6y_HtSQ6-u8TORaLjNXg9ngRHQaKi2uabmZ0h5JJCSYHKm1XZ2ZIByBJYCcCPyIhqxQvBqDgmI-CSFWIq307JWUorAKCKyxER83cMtqu_P7_SZB195_w64KTp42SHbpsPbgYf_DL6oc1AvwzYpnNy0tiQ8OL3jsnr_fxl9lgsnh-eZneLwnEhtsW0dtYpDRWzSiiQklYCKDBKlaUaADnlzC6lFkxVU2EbrUBp0XCNXHJEPibXB98cvBkwbU3rk8OQP8Z-SIZVmqtskkE4gC72KUVsTO7S2vhhKJj9PmZlOmv2-xhgJu-TJVe_3jY5G5poc_f0p9NCVbKSmbs9cJiL7jxGk5zHzmHtY17I1L3_P-QHiWR4qA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29837313</pqid></control><display><type>article</type><title>Ekeland’s principle for vector equilibrium problems</title><source>Access via ScienceDirect (Elsevier)</source><creator>Bianchi, M. ; Kassay, G. ; Pini, R.</creator><creatorcontrib>Bianchi, M. ; Kassay, G. ; Pini, R.</creatorcontrib><description>In this paper, the authors deal with bifunctions defined on complete metric spaces and with values in locally convex spaces ordered by closed convex cones. The aim is to provide a vector version of Ekeland’s theorem related to equilibrium problems. To prove this principle, a weak notion of continuity of a vector-valued function is considered, and some of its properties are presented. Via the vector Ekeland’s principle, existence results for vector equilibria are proved in both compact and noncompact domains.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2006.02.003</identifier><identifier>CODEN: NOANDD</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Calculus of variations and optimal control ; Ekeland’s principle ; Exact sciences and technology ; Global analysis, analysis on manifolds ; Mathematical analysis ; Mathematics ; Quasi lower semicontinuity ; Sciences and techniques of general use ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds ; Vector equilibrium problem</subject><ispartof>Nonlinear analysis, 2007-04, Vol.66 (7), p.1454-1464</ispartof><rights>2006 Elsevier Ltd</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-4dcac78092a7570661950102117a1800e3132ab68527945af870785f38e363ee3</citedby><cites>FETCH-LOGICAL-c355t-4dcac78092a7570661950102117a1800e3132ab68527945af870785f38e363ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.na.2006.02.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18579696$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bianchi, M.</creatorcontrib><creatorcontrib>Kassay, G.</creatorcontrib><creatorcontrib>Pini, R.</creatorcontrib><title>Ekeland’s principle for vector equilibrium problems</title><title>Nonlinear analysis</title><description>In this paper, the authors deal with bifunctions defined on complete metric spaces and with values in locally convex spaces ordered by closed convex cones. The aim is to provide a vector version of Ekeland’s theorem related to equilibrium problems. To prove this principle, a weak notion of continuity of a vector-valued function is considered, and some of its properties are presented. Via the vector Ekeland’s principle, existence results for vector equilibria are proved in both compact and noncompact domains.</description><subject>Calculus of variations and optimal control</subject><subject>Ekeland’s principle</subject><subject>Exact sciences and technology</subject><subject>Global analysis, analysis on manifolds</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Quasi lower semicontinuity</subject><subject>Sciences and techniques of general use</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><subject>Vector equilibrium problem</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OAzEQhC0EEiHQU6aB7o61Hf8cHYrCjxSJBiQ6y_HtSQ6-u8TORaLjNXg9ngRHQaKi2uabmZ0h5JJCSYHKm1XZ2ZIByBJYCcCPyIhqxQvBqDgmI-CSFWIq307JWUorAKCKyxER83cMtqu_P7_SZB195_w64KTp42SHbpsPbgYf_DL6oc1AvwzYpnNy0tiQ8OL3jsnr_fxl9lgsnh-eZneLwnEhtsW0dtYpDRWzSiiQklYCKDBKlaUaADnlzC6lFkxVU2EbrUBp0XCNXHJEPibXB98cvBkwbU3rk8OQP8Z-SIZVmqtskkE4gC72KUVsTO7S2vhhKJj9PmZlOmv2-xhgJu-TJVe_3jY5G5poc_f0p9NCVbKSmbs9cJiL7jxGk5zHzmHtY17I1L3_P-QHiWR4qA</recordid><startdate>20070401</startdate><enddate>20070401</enddate><creator>Bianchi, M.</creator><creator>Kassay, G.</creator><creator>Pini, R.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20070401</creationdate><title>Ekeland’s principle for vector equilibrium problems</title><author>Bianchi, M. ; Kassay, G. ; Pini, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-4dcac78092a7570661950102117a1800e3132ab68527945af870785f38e363ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Calculus of variations and optimal control</topic><topic>Ekeland’s principle</topic><topic>Exact sciences and technology</topic><topic>Global analysis, analysis on manifolds</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Quasi lower semicontinuity</topic><topic>Sciences and techniques of general use</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><topic>Vector equilibrium problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bianchi, M.</creatorcontrib><creatorcontrib>Kassay, G.</creatorcontrib><creatorcontrib>Pini, R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bianchi, M.</au><au>Kassay, G.</au><au>Pini, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ekeland’s principle for vector equilibrium problems</atitle><jtitle>Nonlinear analysis</jtitle><date>2007-04-01</date><risdate>2007</risdate><volume>66</volume><issue>7</issue><spage>1454</spage><epage>1464</epage><pages>1454-1464</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><coden>NOANDD</coden><abstract>In this paper, the authors deal with bifunctions defined on complete metric spaces and with values in locally convex spaces ordered by closed convex cones. The aim is to provide a vector version of Ekeland’s theorem related to equilibrium problems. To prove this principle, a weak notion of continuity of a vector-valued function is considered, and some of its properties are presented. Via the vector Ekeland’s principle, existence results for vector equilibria are proved in both compact and noncompact domains.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2006.02.003</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0362-546X |
ispartof | Nonlinear analysis, 2007-04, Vol.66 (7), p.1454-1464 |
issn | 0362-546X 1873-5215 |
language | eng |
recordid | cdi_proquest_miscellaneous_29837313 |
source | Access via ScienceDirect (Elsevier) |
subjects | Calculus of variations and optimal control Ekeland’s principle Exact sciences and technology Global analysis, analysis on manifolds Mathematical analysis Mathematics Quasi lower semicontinuity Sciences and techniques of general use Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds Vector equilibrium problem |
title | Ekeland’s principle for vector equilibrium problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T18%3A38%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ekeland%E2%80%99s%20principle%20for%20vector%20equilibrium%20problems&rft.jtitle=Nonlinear%20analysis&rft.au=Bianchi,%20M.&rft.date=2007-04-01&rft.volume=66&rft.issue=7&rft.spage=1454&rft.epage=1464&rft.pages=1454-1464&rft.issn=0362-546X&rft.eissn=1873-5215&rft.coden=NOANDD&rft_id=info:doi/10.1016/j.na.2006.02.003&rft_dat=%3Cproquest_cross%3E29837313%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29837313&rft_id=info:pmid/&rft_els_id=S0362546X06000794&rfr_iscdi=true |