Modeling of three-dimensional cutting forces in micro-end-milling

A new nominal uncut chip thickness algorithm for micro-scale end-milling is proposed by considering the combination of an exact trochoidal trajectory of the tool tip and tool run-out, and then the actual uncut chip thickness may be obtained from a comparison between the current accumulative uncut ch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of micromechanics and microengineering 2007-04, Vol.17 (4), p.671-678
Hauptverfasser: Li, Chengfeng, Lai, Xinmin, Li, Hongtao, Ni, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new nominal uncut chip thickness algorithm for micro-scale end-milling is proposed by considering the combination of an exact trochoidal trajectory of the tool tip and tool run-out, and then the actual uncut chip thickness may be obtained from a comparison between the current accumulative uncut chip thickness and the minimum chip thickness. Due to the intermittency of the chip formation, the milling process is divided into an elastic-plastic deformation regime and a chip formation regime dominated by ploughing forces and shearing forces, respectively, and three-dimensional cutting forces are modeled according to different regimes. Based on the modeling and simulation technologies introduced, a simulation system for the prediction of three-dimensional cutting forces of a micro-scale end-milling process is developed. The simulation results show a very satisfactory agreement with those data from milling experiments.
ISSN:0960-1317
1361-6439
DOI:10.1088/0960-1317/17/4/001