Modeling of three-dimensional cutting forces in micro-end-milling
A new nominal uncut chip thickness algorithm for micro-scale end-milling is proposed by considering the combination of an exact trochoidal trajectory of the tool tip and tool run-out, and then the actual uncut chip thickness may be obtained from a comparison between the current accumulative uncut ch...
Gespeichert in:
Veröffentlicht in: | Journal of micromechanics and microengineering 2007-04, Vol.17 (4), p.671-678 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A new nominal uncut chip thickness algorithm for micro-scale end-milling is proposed by considering the combination of an exact trochoidal trajectory of the tool tip and tool run-out, and then the actual uncut chip thickness may be obtained from a comparison between the current accumulative uncut chip thickness and the minimum chip thickness. Due to the intermittency of the chip formation, the milling process is divided into an elastic-plastic deformation regime and a chip formation regime dominated by ploughing forces and shearing forces, respectively, and three-dimensional cutting forces are modeled according to different regimes. Based on the modeling and simulation technologies introduced, a simulation system for the prediction of three-dimensional cutting forces of a micro-scale end-milling process is developed. The simulation results show a very satisfactory agreement with those data from milling experiments. |
---|---|
ISSN: | 0960-1317 1361-6439 |
DOI: | 10.1088/0960-1317/17/4/001 |