Microstructure and dry-sliding wear properties of TiC-reinforced composite coating prepared by plasma-transferred arc weld-surfacing process

A wear resistant TiC titanium carbide-reinforced composite coating was fabricated on 1Cr18Ni9Ti austenitic stainless steel substrate by plasma-transferred arc (PTA) weld-surfacing process using Fe–Ti–C powder blends. The microstructure, microhardness and dry-sliding wear behavior of the composite co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2007-06, Vol.458 (1), p.366-370
Hauptverfasser: Liu, Y.F., Mu, J.S., Xu, X.Y., Yang, S.Z.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 370
container_issue 1
container_start_page 366
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 458
creator Liu, Y.F.
Mu, J.S.
Xu, X.Y.
Yang, S.Z.
description A wear resistant TiC titanium carbide-reinforced composite coating was fabricated on 1Cr18Ni9Ti austenitic stainless steel substrate by plasma-transferred arc (PTA) weld-surfacing process using Fe–Ti–C powder blends. The microstructure, microhardness and dry-sliding wear behavior of the composite coating were investigated using optical microscopy (OM), X-ray diffraction (XRD), scanning electron micrograph (SEM), energy-dispersive X-ray analysis (EDS), microhardness tester and ring-on-ring wear tester. The formation mechanism of the composite coating has been discussed. Results show that the composite coating consists of primary TiC carbide as the reinforcing phase and TiC/γ-Fe eutectics as the matrix. The composite coating is metallurgically bonded to the 1Cr18Ni9Ti austenitic stainless steel substrate. The TiC/γ-Fe composite coating has high hardness and excellent wear resistance under dry-sliding wear test condition.
doi_str_mv 10.1016/j.msea.2006.12.086
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29833061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S092150930602750X</els_id><sourcerecordid>29833061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-324dfd4c6ae033b0fa151e16f984b85b96b5d744f22bad063770352ec5ec0063</originalsourceid><addsrcrecordid>eNp9kMuK3DAQRU1IIJ3J_EBW3iQ7efTwE7IJTR4DM8ym90KWSoMa23Kq5IT-h3x0ZHogu6yqqLr3FnWK4oPgleCivTtXM4GpJOdtJWTF-_ZVcRB9p1g9qPZ1ceCDFKzhg3pbvCM6c85FzZtD8ecxWIyUcLNpQyjN4kqHF0ZTcGF5Ln-DwXLFuAKmAFRGX57CkSGExUe04Eob5zVSSJA7k3bPirAazKvxUq6TodmwhGYhD7hPDdocOzlGG3pjr45ogeh98cabieD2pd4Up29fT8cf7OHp-_3xywOztewSU7J23tW2NcCVGrk3ohEgWj_09dg349COjevq2ks5Gsdb1XVcNRJsAzYDUjfFp2tsPvtzA0p6DmRhmswCcSMth14p3ooslFfhjogQvF4xzAYvWnC9c9dnvXPXO3ctpM7cs-njS7ohayafP7eB_jn7jstm2MM_X3WQP_0VADXZAEtGGhBs0i6G_535C5xgnKU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29833061</pqid></control><display><type>article</type><title>Microstructure and dry-sliding wear properties of TiC-reinforced composite coating prepared by plasma-transferred arc weld-surfacing process</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Liu, Y.F. ; Mu, J.S. ; Xu, X.Y. ; Yang, S.Z.</creator><creatorcontrib>Liu, Y.F. ; Mu, J.S. ; Xu, X.Y. ; Yang, S.Z.</creatorcontrib><description>A wear resistant TiC titanium carbide-reinforced composite coating was fabricated on 1Cr18Ni9Ti austenitic stainless steel substrate by plasma-transferred arc (PTA) weld-surfacing process using Fe–Ti–C powder blends. The microstructure, microhardness and dry-sliding wear behavior of the composite coating were investigated using optical microscopy (OM), X-ray diffraction (XRD), scanning electron micrograph (SEM), energy-dispersive X-ray analysis (EDS), microhardness tester and ring-on-ring wear tester. The formation mechanism of the composite coating has been discussed. Results show that the composite coating consists of primary TiC carbide as the reinforcing phase and TiC/γ-Fe eutectics as the matrix. The composite coating is metallurgically bonded to the 1Cr18Ni9Ti austenitic stainless steel substrate. The TiC/γ-Fe composite coating has high hardness and excellent wear resistance under dry-sliding wear test condition.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2006.12.086</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Contact of materials. Friction. Wear ; Exact sciences and technology ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metallic coatings ; Metals. Metallurgy ; Microhardness ; Microstructure ; Plasma-transferred arc weld-surfacing ; Production techniques ; Surface treatment ; Wear</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2007-06, Vol.458 (1), p.366-370</ispartof><rights>2007 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-324dfd4c6ae033b0fa151e16f984b85b96b5d744f22bad063770352ec5ec0063</citedby><cites>FETCH-LOGICAL-c427t-324dfd4c6ae033b0fa151e16f984b85b96b5d744f22bad063770352ec5ec0063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2006.12.086$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18702591$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Y.F.</creatorcontrib><creatorcontrib>Mu, J.S.</creatorcontrib><creatorcontrib>Xu, X.Y.</creatorcontrib><creatorcontrib>Yang, S.Z.</creatorcontrib><title>Microstructure and dry-sliding wear properties of TiC-reinforced composite coating prepared by plasma-transferred arc weld-surfacing process</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>A wear resistant TiC titanium carbide-reinforced composite coating was fabricated on 1Cr18Ni9Ti austenitic stainless steel substrate by plasma-transferred arc (PTA) weld-surfacing process using Fe–Ti–C powder blends. The microstructure, microhardness and dry-sliding wear behavior of the composite coating were investigated using optical microscopy (OM), X-ray diffraction (XRD), scanning electron micrograph (SEM), energy-dispersive X-ray analysis (EDS), microhardness tester and ring-on-ring wear tester. The formation mechanism of the composite coating has been discussed. Results show that the composite coating consists of primary TiC carbide as the reinforcing phase and TiC/γ-Fe eutectics as the matrix. The composite coating is metallurgically bonded to the 1Cr18Ni9Ti austenitic stainless steel substrate. The TiC/γ-Fe composite coating has high hardness and excellent wear resistance under dry-sliding wear test condition.</description><subject>Applied sciences</subject><subject>Contact of materials. Friction. Wear</subject><subject>Exact sciences and technology</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metallic coatings</subject><subject>Metals. Metallurgy</subject><subject>Microhardness</subject><subject>Microstructure</subject><subject>Plasma-transferred arc weld-surfacing</subject><subject>Production techniques</subject><subject>Surface treatment</subject><subject>Wear</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kMuK3DAQRU1IIJ3J_EBW3iQ7efTwE7IJTR4DM8ym90KWSoMa23Kq5IT-h3x0ZHogu6yqqLr3FnWK4oPgleCivTtXM4GpJOdtJWTF-_ZVcRB9p1g9qPZ1ceCDFKzhg3pbvCM6c85FzZtD8ecxWIyUcLNpQyjN4kqHF0ZTcGF5Ln-DwXLFuAKmAFRGX57CkSGExUe04Eob5zVSSJA7k3bPirAazKvxUq6TodmwhGYhD7hPDdocOzlGG3pjr45ogeh98cabieD2pd4Up29fT8cf7OHp-_3xywOztewSU7J23tW2NcCVGrk3ohEgWj_09dg349COjevq2ks5Gsdb1XVcNRJsAzYDUjfFp2tsPvtzA0p6DmRhmswCcSMth14p3ooslFfhjogQvF4xzAYvWnC9c9dnvXPXO3ctpM7cs-njS7ohayafP7eB_jn7jstm2MM_X3WQP_0VADXZAEtGGhBs0i6G_535C5xgnKU</recordid><startdate>20070601</startdate><enddate>20070601</enddate><creator>Liu, Y.F.</creator><creator>Mu, J.S.</creator><creator>Xu, X.Y.</creator><creator>Yang, S.Z.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20070601</creationdate><title>Microstructure and dry-sliding wear properties of TiC-reinforced composite coating prepared by plasma-transferred arc weld-surfacing process</title><author>Liu, Y.F. ; Mu, J.S. ; Xu, X.Y. ; Yang, S.Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-324dfd4c6ae033b0fa151e16f984b85b96b5d744f22bad063770352ec5ec0063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Contact of materials. Friction. Wear</topic><topic>Exact sciences and technology</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metallic coatings</topic><topic>Metals. Metallurgy</topic><topic>Microhardness</topic><topic>Microstructure</topic><topic>Plasma-transferred arc weld-surfacing</topic><topic>Production techniques</topic><topic>Surface treatment</topic><topic>Wear</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Y.F.</creatorcontrib><creatorcontrib>Mu, J.S.</creatorcontrib><creatorcontrib>Xu, X.Y.</creatorcontrib><creatorcontrib>Yang, S.Z.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Y.F.</au><au>Mu, J.S.</au><au>Xu, X.Y.</au><au>Yang, S.Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure and dry-sliding wear properties of TiC-reinforced composite coating prepared by plasma-transferred arc weld-surfacing process</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2007-06-01</date><risdate>2007</risdate><volume>458</volume><issue>1</issue><spage>366</spage><epage>370</epage><pages>366-370</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>A wear resistant TiC titanium carbide-reinforced composite coating was fabricated on 1Cr18Ni9Ti austenitic stainless steel substrate by plasma-transferred arc (PTA) weld-surfacing process using Fe–Ti–C powder blends. The microstructure, microhardness and dry-sliding wear behavior of the composite coating were investigated using optical microscopy (OM), X-ray diffraction (XRD), scanning electron micrograph (SEM), energy-dispersive X-ray analysis (EDS), microhardness tester and ring-on-ring wear tester. The formation mechanism of the composite coating has been discussed. Results show that the composite coating consists of primary TiC carbide as the reinforcing phase and TiC/γ-Fe eutectics as the matrix. The composite coating is metallurgically bonded to the 1Cr18Ni9Ti austenitic stainless steel substrate. The TiC/γ-Fe composite coating has high hardness and excellent wear resistance under dry-sliding wear test condition.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2006.12.086</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2007-06, Vol.458 (1), p.366-370
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_miscellaneous_29833061
source Elsevier ScienceDirect Journals Complete
subjects Applied sciences
Contact of materials. Friction. Wear
Exact sciences and technology
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Metallic coatings
Metals. Metallurgy
Microhardness
Microstructure
Plasma-transferred arc weld-surfacing
Production techniques
Surface treatment
Wear
title Microstructure and dry-sliding wear properties of TiC-reinforced composite coating prepared by plasma-transferred arc weld-surfacing process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A18%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure%20and%20dry-sliding%20wear%20properties%20of%20TiC-reinforced%20composite%20coating%20prepared%20by%20plasma-transferred%20arc%20weld-surfacing%20process&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Liu,%20Y.F.&rft.date=2007-06-01&rft.volume=458&rft.issue=1&rft.spage=366&rft.epage=370&rft.pages=366-370&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2006.12.086&rft_dat=%3Cproquest_cross%3E29833061%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29833061&rft_id=info:pmid/&rft_els_id=S092150930602750X&rfr_iscdi=true