Microstructure and dry-sliding wear properties of TiC-reinforced composite coating prepared by plasma-transferred arc weld-surfacing process
A wear resistant TiC titanium carbide-reinforced composite coating was fabricated on 1Cr18Ni9Ti austenitic stainless steel substrate by plasma-transferred arc (PTA) weld-surfacing process using Fe–Ti–C powder blends. The microstructure, microhardness and dry-sliding wear behavior of the composite co...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2007-06, Vol.458 (1), p.366-370 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 370 |
---|---|
container_issue | 1 |
container_start_page | 366 |
container_title | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
container_volume | 458 |
creator | Liu, Y.F. Mu, J.S. Xu, X.Y. Yang, S.Z. |
description | A wear resistant TiC titanium carbide-reinforced composite coating was fabricated on 1Cr18Ni9Ti austenitic stainless steel substrate by plasma-transferred arc (PTA) weld-surfacing process using Fe–Ti–C powder blends. The microstructure, microhardness and dry-sliding wear behavior of the composite coating were investigated using optical microscopy (OM), X-ray diffraction (XRD), scanning electron micrograph (SEM), energy-dispersive X-ray analysis (EDS), microhardness tester and ring-on-ring wear tester. The formation mechanism of the composite coating has been discussed. Results show that the composite coating consists of primary TiC carbide as the reinforcing phase and TiC/γ-Fe eutectics as the matrix. The composite coating is metallurgically bonded to the 1Cr18Ni9Ti austenitic stainless steel substrate. The TiC/γ-Fe composite coating has high hardness and excellent wear resistance under dry-sliding wear test condition. |
doi_str_mv | 10.1016/j.msea.2006.12.086 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29833061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S092150930602750X</els_id><sourcerecordid>29833061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-324dfd4c6ae033b0fa151e16f984b85b96b5d744f22bad063770352ec5ec0063</originalsourceid><addsrcrecordid>eNp9kMuK3DAQRU1IIJ3J_EBW3iQ7efTwE7IJTR4DM8ym90KWSoMa23Kq5IT-h3x0ZHogu6yqqLr3FnWK4oPgleCivTtXM4GpJOdtJWTF-_ZVcRB9p1g9qPZ1ceCDFKzhg3pbvCM6c85FzZtD8ecxWIyUcLNpQyjN4kqHF0ZTcGF5Ln-DwXLFuAKmAFRGX57CkSGExUe04Eob5zVSSJA7k3bPirAazKvxUq6TodmwhGYhD7hPDdocOzlGG3pjr45ogeh98cabieD2pd4Up29fT8cf7OHp-_3xywOztewSU7J23tW2NcCVGrk3ohEgWj_09dg349COjevq2ks5Gsdb1XVcNRJsAzYDUjfFp2tsPvtzA0p6DmRhmswCcSMth14p3ooslFfhjogQvF4xzAYvWnC9c9dnvXPXO3ctpM7cs-njS7ohayafP7eB_jn7jstm2MM_X3WQP_0VADXZAEtGGhBs0i6G_535C5xgnKU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29833061</pqid></control><display><type>article</type><title>Microstructure and dry-sliding wear properties of TiC-reinforced composite coating prepared by plasma-transferred arc weld-surfacing process</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Liu, Y.F. ; Mu, J.S. ; Xu, X.Y. ; Yang, S.Z.</creator><creatorcontrib>Liu, Y.F. ; Mu, J.S. ; Xu, X.Y. ; Yang, S.Z.</creatorcontrib><description>A wear resistant TiC titanium carbide-reinforced composite coating was fabricated on 1Cr18Ni9Ti austenitic stainless steel substrate by plasma-transferred arc (PTA) weld-surfacing process using Fe–Ti–C powder blends. The microstructure, microhardness and dry-sliding wear behavior of the composite coating were investigated using optical microscopy (OM), X-ray diffraction (XRD), scanning electron micrograph (SEM), energy-dispersive X-ray analysis (EDS), microhardness tester and ring-on-ring wear tester. The formation mechanism of the composite coating has been discussed. Results show that the composite coating consists of primary TiC carbide as the reinforcing phase and TiC/γ-Fe eutectics as the matrix. The composite coating is metallurgically bonded to the 1Cr18Ni9Ti austenitic stainless steel substrate. The TiC/γ-Fe composite coating has high hardness and excellent wear resistance under dry-sliding wear test condition.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2006.12.086</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Contact of materials. Friction. Wear ; Exact sciences and technology ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metallic coatings ; Metals. Metallurgy ; Microhardness ; Microstructure ; Plasma-transferred arc weld-surfacing ; Production techniques ; Surface treatment ; Wear</subject><ispartof>Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2007-06, Vol.458 (1), p.366-370</ispartof><rights>2007 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-324dfd4c6ae033b0fa151e16f984b85b96b5d744f22bad063770352ec5ec0063</citedby><cites>FETCH-LOGICAL-c427t-324dfd4c6ae033b0fa151e16f984b85b96b5d744f22bad063770352ec5ec0063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2006.12.086$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18702591$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Y.F.</creatorcontrib><creatorcontrib>Mu, J.S.</creatorcontrib><creatorcontrib>Xu, X.Y.</creatorcontrib><creatorcontrib>Yang, S.Z.</creatorcontrib><title>Microstructure and dry-sliding wear properties of TiC-reinforced composite coating prepared by plasma-transferred arc weld-surfacing process</title><title>Materials science & engineering. A, Structural materials : properties, microstructure and processing</title><description>A wear resistant TiC titanium carbide-reinforced composite coating was fabricated on 1Cr18Ni9Ti austenitic stainless steel substrate by plasma-transferred arc (PTA) weld-surfacing process using Fe–Ti–C powder blends. The microstructure, microhardness and dry-sliding wear behavior of the composite coating were investigated using optical microscopy (OM), X-ray diffraction (XRD), scanning electron micrograph (SEM), energy-dispersive X-ray analysis (EDS), microhardness tester and ring-on-ring wear tester. The formation mechanism of the composite coating has been discussed. Results show that the composite coating consists of primary TiC carbide as the reinforcing phase and TiC/γ-Fe eutectics as the matrix. The composite coating is metallurgically bonded to the 1Cr18Ni9Ti austenitic stainless steel substrate. The TiC/γ-Fe composite coating has high hardness and excellent wear resistance under dry-sliding wear test condition.</description><subject>Applied sciences</subject><subject>Contact of materials. Friction. Wear</subject><subject>Exact sciences and technology</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metallic coatings</subject><subject>Metals. Metallurgy</subject><subject>Microhardness</subject><subject>Microstructure</subject><subject>Plasma-transferred arc weld-surfacing</subject><subject>Production techniques</subject><subject>Surface treatment</subject><subject>Wear</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kMuK3DAQRU1IIJ3J_EBW3iQ7efTwE7IJTR4DM8ym90KWSoMa23Kq5IT-h3x0ZHogu6yqqLr3FnWK4oPgleCivTtXM4GpJOdtJWTF-_ZVcRB9p1g9qPZ1ceCDFKzhg3pbvCM6c85FzZtD8ecxWIyUcLNpQyjN4kqHF0ZTcGF5Ln-DwXLFuAKmAFRGX57CkSGExUe04Eob5zVSSJA7k3bPirAazKvxUq6TodmwhGYhD7hPDdocOzlGG3pjr45ogeh98cabieD2pd4Up29fT8cf7OHp-_3xywOztewSU7J23tW2NcCVGrk3ohEgWj_09dg349COjevq2ks5Gsdb1XVcNRJsAzYDUjfFp2tsPvtzA0p6DmRhmswCcSMth14p3ooslFfhjogQvF4xzAYvWnC9c9dnvXPXO3ctpM7cs-njS7ohayafP7eB_jn7jstm2MM_X3WQP_0VADXZAEtGGhBs0i6G_535C5xgnKU</recordid><startdate>20070601</startdate><enddate>20070601</enddate><creator>Liu, Y.F.</creator><creator>Mu, J.S.</creator><creator>Xu, X.Y.</creator><creator>Yang, S.Z.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20070601</creationdate><title>Microstructure and dry-sliding wear properties of TiC-reinforced composite coating prepared by plasma-transferred arc weld-surfacing process</title><author>Liu, Y.F. ; Mu, J.S. ; Xu, X.Y. ; Yang, S.Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-324dfd4c6ae033b0fa151e16f984b85b96b5d744f22bad063770352ec5ec0063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Contact of materials. Friction. Wear</topic><topic>Exact sciences and technology</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metallic coatings</topic><topic>Metals. Metallurgy</topic><topic>Microhardness</topic><topic>Microstructure</topic><topic>Plasma-transferred arc weld-surfacing</topic><topic>Production techniques</topic><topic>Surface treatment</topic><topic>Wear</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Y.F.</creatorcontrib><creatorcontrib>Mu, J.S.</creatorcontrib><creatorcontrib>Xu, X.Y.</creatorcontrib><creatorcontrib>Yang, S.Z.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Y.F.</au><au>Mu, J.S.</au><au>Xu, X.Y.</au><au>Yang, S.Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure and dry-sliding wear properties of TiC-reinforced composite coating prepared by plasma-transferred arc weld-surfacing process</atitle><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2007-06-01</date><risdate>2007</risdate><volume>458</volume><issue>1</issue><spage>366</spage><epage>370</epage><pages>366-370</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>A wear resistant TiC titanium carbide-reinforced composite coating was fabricated on 1Cr18Ni9Ti austenitic stainless steel substrate by plasma-transferred arc (PTA) weld-surfacing process using Fe–Ti–C powder blends. The microstructure, microhardness and dry-sliding wear behavior of the composite coating were investigated using optical microscopy (OM), X-ray diffraction (XRD), scanning electron micrograph (SEM), energy-dispersive X-ray analysis (EDS), microhardness tester and ring-on-ring wear tester. The formation mechanism of the composite coating has been discussed. Results show that the composite coating consists of primary TiC carbide as the reinforcing phase and TiC/γ-Fe eutectics as the matrix. The composite coating is metallurgically bonded to the 1Cr18Ni9Ti austenitic stainless steel substrate. The TiC/γ-Fe composite coating has high hardness and excellent wear resistance under dry-sliding wear test condition.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2006.12.086</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-5093 |
ispartof | Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2007-06, Vol.458 (1), p.366-370 |
issn | 0921-5093 1873-4936 |
language | eng |
recordid | cdi_proquest_miscellaneous_29833061 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Applied sciences Contact of materials. Friction. Wear Exact sciences and technology Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology Metallic coatings Metals. Metallurgy Microhardness Microstructure Plasma-transferred arc weld-surfacing Production techniques Surface treatment Wear |
title | Microstructure and dry-sliding wear properties of TiC-reinforced composite coating prepared by plasma-transferred arc weld-surfacing process |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A18%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure%20and%20dry-sliding%20wear%20properties%20of%20TiC-reinforced%20composite%20coating%20prepared%20by%20plasma-transferred%20arc%20weld-surfacing%20process&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Liu,%20Y.F.&rft.date=2007-06-01&rft.volume=458&rft.issue=1&rft.spage=366&rft.epage=370&rft.pages=366-370&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2006.12.086&rft_dat=%3Cproquest_cross%3E29833061%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29833061&rft_id=info:pmid/&rft_els_id=S092150930602750X&rfr_iscdi=true |