HgCdTe detectors operating above 200 K

This paper reports progress with work aimed at using HgCdTe detector arrays at temperatures above 200 K where cooling is possible with thermo-electric coolers. Both theoretical analysis and calculations based on the detector dark currents indicate that useful performance should be obtainable in this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2006-06, Vol.35 (6), p.1140-1144
Hauptverfasser: GORDON, N. T, LEES, D. J, BOWEN, G, PHILLIPS, T. S, HAIGH, M, JONES, C. L, MAXEY, C. D, HIPWOOD, L, CATCHPOLE, R. A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1144
container_issue 6
container_start_page 1140
container_title Journal of electronic materials
container_volume 35
creator GORDON, N. T
LEES, D. J
BOWEN, G
PHILLIPS, T. S
HAIGH, M
JONES, C. L
MAXEY, C. D
HIPWOOD, L
CATCHPOLE, R. A
description This paper reports progress with work aimed at using HgCdTe detector arrays at temperatures above 200 K where cooling is possible with thermo-electric coolers. Both theoretical analysis and calculations based on the detector dark currents indicate that useful performance should be obtainable in this temperature range. However, measurements on the performance of two-dimensional arrays show that the thermal sensitivity degrades rapidly for temperatures above 200 K. The reduction in performance at higher temperatures is shown to be mainly due to increasing 1/f noise as the temperature increases. The noise is characterized as a function of bias and temperature and this is used to predict the noise equivalent temperature difference (NETD) as a function of temperature. We describe an approach for producing two-dimensional arrays based on biasing the detector elements at close to zero bias so that the 1/f noise is minimized. A camera based on this concept is described and an example of the imaging performance is shown. [PUBLICATION ABSTRACT]
doi_str_mv 10.1007/s11664-006-0233-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29831518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1076599591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-8e0e0513b9bba9082aa87551692cfe448cb3ebe30d64873a887ca18dbc0269653</originalsourceid><addsrcrecordid>eNpdkE1LAzEURYMoWD9-gLtBsLvoe3mTTGYpRa1YcFPBXchkMmXKdFKTqeC_d0oLgqu7OfdyOYzdINwjQPGQEJXKOYDiIIh4ccImKHPiqNXnKZsAKeRSkDxnFymtAVCixgmbzlezeumz2g_eDSGmLGx9tEPbrzJbhW-fCYDs7YqdNbZL_vqYl-zj-Wk5m_PF-8vr7HHBHRENXHvwIJGqsqpsCVpYqwspUZXCNT7PtavIV56gVrkuyGpdOIu6rhwIVSpJl2x62N3G8LXzaTCbNjnfdbb3YZeMKDXtn4_g7T9wHXaxH78ZAbkmQoQRwgPkYkgp-sZsY7ux8ccgmL02c9BmRm1mr80UY-fuOGyTs10Tbe_a9FcsSiXkyP4C9BRpVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204833110</pqid></control><display><type>article</type><title>HgCdTe detectors operating above 200 K</title><source>SpringerLink Journals</source><creator>GORDON, N. T ; LEES, D. J ; BOWEN, G ; PHILLIPS, T. S ; HAIGH, M ; JONES, C. L ; MAXEY, C. D ; HIPWOOD, L ; CATCHPOLE, R. A</creator><creatorcontrib>GORDON, N. T ; LEES, D. J ; BOWEN, G ; PHILLIPS, T. S ; HAIGH, M ; JONES, C. L ; MAXEY, C. D ; HIPWOOD, L ; CATCHPOLE, R. A</creatorcontrib><description>This paper reports progress with work aimed at using HgCdTe detector arrays at temperatures above 200 K where cooling is possible with thermo-electric coolers. Both theoretical analysis and calculations based on the detector dark currents indicate that useful performance should be obtainable in this temperature range. However, measurements on the performance of two-dimensional arrays show that the thermal sensitivity degrades rapidly for temperatures above 200 K. The reduction in performance at higher temperatures is shown to be mainly due to increasing 1/f noise as the temperature increases. The noise is characterized as a function of bias and temperature and this is used to predict the noise equivalent temperature difference (NETD) as a function of temperature. We describe an approach for producing two-dimensional arrays based on biasing the detector elements at close to zero bias so that the 1/f noise is minimized. A camera based on this concept is described and an example of the imaging performance is shown. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-006-0233-7</identifier><identifier>CODEN: JECMA5</identifier><language>eng</language><publisher>New York, NY: Institute of Electrical and Electronics Engineers</publisher><subject>Applied sciences ; Cross-disciplinary physics: materials science; rheology ; Electronics ; Exact sciences and technology ; Growth from vapor ; High temperature ; Materials science ; Mercury cadmium telluride detectors ; Methods of crystal growth; physics of crystal growth ; Optoelectronic devices ; Photodetectors (including infrared and CCD detectors) ; Physics ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><ispartof>Journal of electronic materials, 2006-06, Vol.35 (6), p.1140-1144</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright Minerals, Metals &amp; Materials Society Jun 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-8e0e0513b9bba9082aa87551692cfe448cb3ebe30d64873a887ca18dbc0269653</citedby><cites>FETCH-LOGICAL-c333t-8e0e0513b9bba9082aa87551692cfe448cb3ebe30d64873a887ca18dbc0269653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17962502$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>GORDON, N. T</creatorcontrib><creatorcontrib>LEES, D. J</creatorcontrib><creatorcontrib>BOWEN, G</creatorcontrib><creatorcontrib>PHILLIPS, T. S</creatorcontrib><creatorcontrib>HAIGH, M</creatorcontrib><creatorcontrib>JONES, C. L</creatorcontrib><creatorcontrib>MAXEY, C. D</creatorcontrib><creatorcontrib>HIPWOOD, L</creatorcontrib><creatorcontrib>CATCHPOLE, R. A</creatorcontrib><title>HgCdTe detectors operating above 200 K</title><title>Journal of electronic materials</title><description>This paper reports progress with work aimed at using HgCdTe detector arrays at temperatures above 200 K where cooling is possible with thermo-electric coolers. Both theoretical analysis and calculations based on the detector dark currents indicate that useful performance should be obtainable in this temperature range. However, measurements on the performance of two-dimensional arrays show that the thermal sensitivity degrades rapidly for temperatures above 200 K. The reduction in performance at higher temperatures is shown to be mainly due to increasing 1/f noise as the temperature increases. The noise is characterized as a function of bias and temperature and this is used to predict the noise equivalent temperature difference (NETD) as a function of temperature. We describe an approach for producing two-dimensional arrays based on biasing the detector elements at close to zero bias so that the 1/f noise is minimized. A camera based on this concept is described and an example of the imaging performance is shown. [PUBLICATION ABSTRACT]</description><subject>Applied sciences</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Growth from vapor</subject><subject>High temperature</subject><subject>Materials science</subject><subject>Mercury cadmium telluride detectors</subject><subject>Methods of crystal growth; physics of crystal growth</subject><subject>Optoelectronic devices</subject><subject>Photodetectors (including infrared and CCD detectors)</subject><subject>Physics</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkE1LAzEURYMoWD9-gLtBsLvoe3mTTGYpRa1YcFPBXchkMmXKdFKTqeC_d0oLgqu7OfdyOYzdINwjQPGQEJXKOYDiIIh4ccImKHPiqNXnKZsAKeRSkDxnFymtAVCixgmbzlezeumz2g_eDSGmLGx9tEPbrzJbhW-fCYDs7YqdNbZL_vqYl-zj-Wk5m_PF-8vr7HHBHRENXHvwIJGqsqpsCVpYqwspUZXCNT7PtavIV56gVrkuyGpdOIu6rhwIVSpJl2x62N3G8LXzaTCbNjnfdbb3YZeMKDXtn4_g7T9wHXaxH78ZAbkmQoQRwgPkYkgp-sZsY7ux8ccgmL02c9BmRm1mr80UY-fuOGyTs10Tbe_a9FcsSiXkyP4C9BRpVg</recordid><startdate>20060601</startdate><enddate>20060601</enddate><creator>GORDON, N. T</creator><creator>LEES, D. J</creator><creator>BOWEN, G</creator><creator>PHILLIPS, T. S</creator><creator>HAIGH, M</creator><creator>JONES, C. L</creator><creator>MAXEY, C. D</creator><creator>HIPWOOD, L</creator><creator>CATCHPOLE, R. A</creator><general>Institute of Electrical and Electronics Engineers</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7QQ</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20060601</creationdate><title>HgCdTe detectors operating above 200 K</title><author>GORDON, N. T ; LEES, D. J ; BOWEN, G ; PHILLIPS, T. S ; HAIGH, M ; JONES, C. L ; MAXEY, C. D ; HIPWOOD, L ; CATCHPOLE, R. A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-8e0e0513b9bba9082aa87551692cfe448cb3ebe30d64873a887ca18dbc0269653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Growth from vapor</topic><topic>High temperature</topic><topic>Materials science</topic><topic>Mercury cadmium telluride detectors</topic><topic>Methods of crystal growth; physics of crystal growth</topic><topic>Optoelectronic devices</topic><topic>Photodetectors (including infrared and CCD detectors)</topic><topic>Physics</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GORDON, N. T</creatorcontrib><creatorcontrib>LEES, D. J</creatorcontrib><creatorcontrib>BOWEN, G</creatorcontrib><creatorcontrib>PHILLIPS, T. S</creatorcontrib><creatorcontrib>HAIGH, M</creatorcontrib><creatorcontrib>JONES, C. L</creatorcontrib><creatorcontrib>MAXEY, C. D</creatorcontrib><creatorcontrib>HIPWOOD, L</creatorcontrib><creatorcontrib>CATCHPOLE, R. A</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Ceramic Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GORDON, N. T</au><au>LEES, D. J</au><au>BOWEN, G</au><au>PHILLIPS, T. S</au><au>HAIGH, M</au><au>JONES, C. L</au><au>MAXEY, C. D</au><au>HIPWOOD, L</au><au>CATCHPOLE, R. A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HgCdTe detectors operating above 200 K</atitle><jtitle>Journal of electronic materials</jtitle><date>2006-06-01</date><risdate>2006</risdate><volume>35</volume><issue>6</issue><spage>1140</spage><epage>1144</epage><pages>1140-1144</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><coden>JECMA5</coden><abstract>This paper reports progress with work aimed at using HgCdTe detector arrays at temperatures above 200 K where cooling is possible with thermo-electric coolers. Both theoretical analysis and calculations based on the detector dark currents indicate that useful performance should be obtainable in this temperature range. However, measurements on the performance of two-dimensional arrays show that the thermal sensitivity degrades rapidly for temperatures above 200 K. The reduction in performance at higher temperatures is shown to be mainly due to increasing 1/f noise as the temperature increases. The noise is characterized as a function of bias and temperature and this is used to predict the noise equivalent temperature difference (NETD) as a function of temperature. We describe an approach for producing two-dimensional arrays based on biasing the detector elements at close to zero bias so that the 1/f noise is minimized. A camera based on this concept is described and an example of the imaging performance is shown. [PUBLICATION ABSTRACT]</abstract><cop>New York, NY</cop><pub>Institute of Electrical and Electronics Engineers</pub><doi>10.1007/s11664-006-0233-7</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2006-06, Vol.35 (6), p.1140-1144
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_miscellaneous_29831518
source SpringerLink Journals
subjects Applied sciences
Cross-disciplinary physics: materials science
rheology
Electronics
Exact sciences and technology
Growth from vapor
High temperature
Materials science
Mercury cadmium telluride detectors
Methods of crystal growth
physics of crystal growth
Optoelectronic devices
Photodetectors (including infrared and CCD detectors)
Physics
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
title HgCdTe detectors operating above 200 K
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T10%3A17%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HgCdTe%20detectors%20operating%20above%20200%20K&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=GORDON,%20N.%20T&rft.date=2006-06-01&rft.volume=35&rft.issue=6&rft.spage=1140&rft.epage=1144&rft.pages=1140-1144&rft.issn=0361-5235&rft.eissn=1543-186X&rft.coden=JECMA5&rft_id=info:doi/10.1007/s11664-006-0233-7&rft_dat=%3Cproquest_cross%3E1076599591%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204833110&rft_id=info:pmid/&rfr_iscdi=true