HgCdTe detectors operating above 200 K
This paper reports progress with work aimed at using HgCdTe detector arrays at temperatures above 200 K where cooling is possible with thermo-electric coolers. Both theoretical analysis and calculations based on the detector dark currents indicate that useful performance should be obtainable in this...
Gespeichert in:
Veröffentlicht in: | Journal of electronic materials 2006-06, Vol.35 (6), p.1140-1144 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1144 |
---|---|
container_issue | 6 |
container_start_page | 1140 |
container_title | Journal of electronic materials |
container_volume | 35 |
creator | GORDON, N. T LEES, D. J BOWEN, G PHILLIPS, T. S HAIGH, M JONES, C. L MAXEY, C. D HIPWOOD, L CATCHPOLE, R. A |
description | This paper reports progress with work aimed at using HgCdTe detector arrays at temperatures above 200 K where cooling is possible with thermo-electric coolers. Both theoretical analysis and calculations based on the detector dark currents indicate that useful performance should be obtainable in this temperature range. However, measurements on the performance of two-dimensional arrays show that the thermal sensitivity degrades rapidly for temperatures above 200 K. The reduction in performance at higher temperatures is shown to be mainly due to increasing 1/f noise as the temperature increases. The noise is characterized as a function of bias and temperature and this is used to predict the noise equivalent temperature difference (NETD) as a function of temperature. We describe an approach for producing two-dimensional arrays based on biasing the detector elements at close to zero bias so that the 1/f noise is minimized. A camera based on this concept is described and an example of the imaging performance is shown. [PUBLICATION ABSTRACT] |
doi_str_mv | 10.1007/s11664-006-0233-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29831518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1076599591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-8e0e0513b9bba9082aa87551692cfe448cb3ebe30d64873a887ca18dbc0269653</originalsourceid><addsrcrecordid>eNpdkE1LAzEURYMoWD9-gLtBsLvoe3mTTGYpRa1YcFPBXchkMmXKdFKTqeC_d0oLgqu7OfdyOYzdINwjQPGQEJXKOYDiIIh4ccImKHPiqNXnKZsAKeRSkDxnFymtAVCixgmbzlezeumz2g_eDSGmLGx9tEPbrzJbhW-fCYDs7YqdNbZL_vqYl-zj-Wk5m_PF-8vr7HHBHRENXHvwIJGqsqpsCVpYqwspUZXCNT7PtavIV56gVrkuyGpdOIu6rhwIVSpJl2x62N3G8LXzaTCbNjnfdbb3YZeMKDXtn4_g7T9wHXaxH78ZAbkmQoQRwgPkYkgp-sZsY7ux8ccgmL02c9BmRm1mr80UY-fuOGyTs10Tbe_a9FcsSiXkyP4C9BRpVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204833110</pqid></control><display><type>article</type><title>HgCdTe detectors operating above 200 K</title><source>SpringerLink Journals</source><creator>GORDON, N. T ; LEES, D. J ; BOWEN, G ; PHILLIPS, T. S ; HAIGH, M ; JONES, C. L ; MAXEY, C. D ; HIPWOOD, L ; CATCHPOLE, R. A</creator><creatorcontrib>GORDON, N. T ; LEES, D. J ; BOWEN, G ; PHILLIPS, T. S ; HAIGH, M ; JONES, C. L ; MAXEY, C. D ; HIPWOOD, L ; CATCHPOLE, R. A</creatorcontrib><description>This paper reports progress with work aimed at using HgCdTe detector arrays at temperatures above 200 K where cooling is possible with thermo-electric coolers. Both theoretical analysis and calculations based on the detector dark currents indicate that useful performance should be obtainable in this temperature range. However, measurements on the performance of two-dimensional arrays show that the thermal sensitivity degrades rapidly for temperatures above 200 K. The reduction in performance at higher temperatures is shown to be mainly due to increasing 1/f noise as the temperature increases. The noise is characterized as a function of bias and temperature and this is used to predict the noise equivalent temperature difference (NETD) as a function of temperature. We describe an approach for producing two-dimensional arrays based on biasing the detector elements at close to zero bias so that the 1/f noise is minimized. A camera based on this concept is described and an example of the imaging performance is shown. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-006-0233-7</identifier><identifier>CODEN: JECMA5</identifier><language>eng</language><publisher>New York, NY: Institute of Electrical and Electronics Engineers</publisher><subject>Applied sciences ; Cross-disciplinary physics: materials science; rheology ; Electronics ; Exact sciences and technology ; Growth from vapor ; High temperature ; Materials science ; Mercury cadmium telluride detectors ; Methods of crystal growth; physics of crystal growth ; Optoelectronic devices ; Photodetectors (including infrared and CCD detectors) ; Physics ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><ispartof>Journal of electronic materials, 2006-06, Vol.35 (6), p.1140-1144</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright Minerals, Metals & Materials Society Jun 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-8e0e0513b9bba9082aa87551692cfe448cb3ebe30d64873a887ca18dbc0269653</citedby><cites>FETCH-LOGICAL-c333t-8e0e0513b9bba9082aa87551692cfe448cb3ebe30d64873a887ca18dbc0269653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17962502$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>GORDON, N. T</creatorcontrib><creatorcontrib>LEES, D. J</creatorcontrib><creatorcontrib>BOWEN, G</creatorcontrib><creatorcontrib>PHILLIPS, T. S</creatorcontrib><creatorcontrib>HAIGH, M</creatorcontrib><creatorcontrib>JONES, C. L</creatorcontrib><creatorcontrib>MAXEY, C. D</creatorcontrib><creatorcontrib>HIPWOOD, L</creatorcontrib><creatorcontrib>CATCHPOLE, R. A</creatorcontrib><title>HgCdTe detectors operating above 200 K</title><title>Journal of electronic materials</title><description>This paper reports progress with work aimed at using HgCdTe detector arrays at temperatures above 200 K where cooling is possible with thermo-electric coolers. Both theoretical analysis and calculations based on the detector dark currents indicate that useful performance should be obtainable in this temperature range. However, measurements on the performance of two-dimensional arrays show that the thermal sensitivity degrades rapidly for temperatures above 200 K. The reduction in performance at higher temperatures is shown to be mainly due to increasing 1/f noise as the temperature increases. The noise is characterized as a function of bias and temperature and this is used to predict the noise equivalent temperature difference (NETD) as a function of temperature. We describe an approach for producing two-dimensional arrays based on biasing the detector elements at close to zero bias so that the 1/f noise is minimized. A camera based on this concept is described and an example of the imaging performance is shown. [PUBLICATION ABSTRACT]</description><subject>Applied sciences</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Growth from vapor</subject><subject>High temperature</subject><subject>Materials science</subject><subject>Mercury cadmium telluride detectors</subject><subject>Methods of crystal growth; physics of crystal growth</subject><subject>Optoelectronic devices</subject><subject>Photodetectors (including infrared and CCD detectors)</subject><subject>Physics</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkE1LAzEURYMoWD9-gLtBsLvoe3mTTGYpRa1YcFPBXchkMmXKdFKTqeC_d0oLgqu7OfdyOYzdINwjQPGQEJXKOYDiIIh4ccImKHPiqNXnKZsAKeRSkDxnFymtAVCixgmbzlezeumz2g_eDSGmLGx9tEPbrzJbhW-fCYDs7YqdNbZL_vqYl-zj-Wk5m_PF-8vr7HHBHRENXHvwIJGqsqpsCVpYqwspUZXCNT7PtavIV56gVrkuyGpdOIu6rhwIVSpJl2x62N3G8LXzaTCbNjnfdbb3YZeMKDXtn4_g7T9wHXaxH78ZAbkmQoQRwgPkYkgp-sZsY7ux8ccgmL02c9BmRm1mr80UY-fuOGyTs10Tbe_a9FcsSiXkyP4C9BRpVg</recordid><startdate>20060601</startdate><enddate>20060601</enddate><creator>GORDON, N. T</creator><creator>LEES, D. J</creator><creator>BOWEN, G</creator><creator>PHILLIPS, T. S</creator><creator>HAIGH, M</creator><creator>JONES, C. L</creator><creator>MAXEY, C. D</creator><creator>HIPWOOD, L</creator><creator>CATCHPOLE, R. A</creator><general>Institute of Electrical and Electronics Engineers</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7QQ</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20060601</creationdate><title>HgCdTe detectors operating above 200 K</title><author>GORDON, N. T ; LEES, D. J ; BOWEN, G ; PHILLIPS, T. S ; HAIGH, M ; JONES, C. L ; MAXEY, C. D ; HIPWOOD, L ; CATCHPOLE, R. A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-8e0e0513b9bba9082aa87551692cfe448cb3ebe30d64873a887ca18dbc0269653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Growth from vapor</topic><topic>High temperature</topic><topic>Materials science</topic><topic>Mercury cadmium telluride detectors</topic><topic>Methods of crystal growth; physics of crystal growth</topic><topic>Optoelectronic devices</topic><topic>Photodetectors (including infrared and CCD detectors)</topic><topic>Physics</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GORDON, N. T</creatorcontrib><creatorcontrib>LEES, D. J</creatorcontrib><creatorcontrib>BOWEN, G</creatorcontrib><creatorcontrib>PHILLIPS, T. S</creatorcontrib><creatorcontrib>HAIGH, M</creatorcontrib><creatorcontrib>JONES, C. L</creatorcontrib><creatorcontrib>MAXEY, C. D</creatorcontrib><creatorcontrib>HIPWOOD, L</creatorcontrib><creatorcontrib>CATCHPOLE, R. A</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Ceramic Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GORDON, N. T</au><au>LEES, D. J</au><au>BOWEN, G</au><au>PHILLIPS, T. S</au><au>HAIGH, M</au><au>JONES, C. L</au><au>MAXEY, C. D</au><au>HIPWOOD, L</au><au>CATCHPOLE, R. A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HgCdTe detectors operating above 200 K</atitle><jtitle>Journal of electronic materials</jtitle><date>2006-06-01</date><risdate>2006</risdate><volume>35</volume><issue>6</issue><spage>1140</spage><epage>1144</epage><pages>1140-1144</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><coden>JECMA5</coden><abstract>This paper reports progress with work aimed at using HgCdTe detector arrays at temperatures above 200 K where cooling is possible with thermo-electric coolers. Both theoretical analysis and calculations based on the detector dark currents indicate that useful performance should be obtainable in this temperature range. However, measurements on the performance of two-dimensional arrays show that the thermal sensitivity degrades rapidly for temperatures above 200 K. The reduction in performance at higher temperatures is shown to be mainly due to increasing 1/f noise as the temperature increases. The noise is characterized as a function of bias and temperature and this is used to predict the noise equivalent temperature difference (NETD) as a function of temperature. We describe an approach for producing two-dimensional arrays based on biasing the detector elements at close to zero bias so that the 1/f noise is minimized. A camera based on this concept is described and an example of the imaging performance is shown. [PUBLICATION ABSTRACT]</abstract><cop>New York, NY</cop><pub>Institute of Electrical and Electronics Engineers</pub><doi>10.1007/s11664-006-0233-7</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5235 |
ispartof | Journal of electronic materials, 2006-06, Vol.35 (6), p.1140-1144 |
issn | 0361-5235 1543-186X |
language | eng |
recordid | cdi_proquest_miscellaneous_29831518 |
source | SpringerLink Journals |
subjects | Applied sciences Cross-disciplinary physics: materials science rheology Electronics Exact sciences and technology Growth from vapor High temperature Materials science Mercury cadmium telluride detectors Methods of crystal growth physics of crystal growth Optoelectronic devices Photodetectors (including infrared and CCD detectors) Physics Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices |
title | HgCdTe detectors operating above 200 K |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T10%3A17%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HgCdTe%20detectors%20operating%20above%20200%20K&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=GORDON,%20N.%20T&rft.date=2006-06-01&rft.volume=35&rft.issue=6&rft.spage=1140&rft.epage=1144&rft.pages=1140-1144&rft.issn=0361-5235&rft.eissn=1543-186X&rft.coden=JECMA5&rft_id=info:doi/10.1007/s11664-006-0233-7&rft_dat=%3Cproquest_cross%3E1076599591%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204833110&rft_id=info:pmid/&rfr_iscdi=true |