Biomolecule-Directed Assembly of Nanoscale Building Blocks Studied via Lattice Monte Carlo Simulation

We perform lattice Monte Carlo simulations to study the assembly of functionalized inorganic nanoscale building blocks into ordered structures using recognitive biomolecule linkers. We develop a coarse-grained lattice model for the nanoscale building block (NBB) and the recognitive linkers. Using th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the American Physical Society 2004-03, Vol.49 (1)
Hauptverfasser: Chen, T, Lamm, M H, Ziff, R, Glotzer, S C
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Bulletin of the American Physical Society
container_volume 49
creator Chen, T
Lamm, M H
Ziff, R
Glotzer, S C
description We perform lattice Monte Carlo simulations to study the assembly of functionalized inorganic nanoscale building blocks into ordered structures using recognitive biomolecule linkers. We develop a coarse-grained lattice model for the nanoscale building block (NBB) and the recognitive linkers. Using this model, we explore how the size ratio of NBB diameter to linker length affects the assembly process and influences the structural properties of the resulting aggregates, including the spatial distribution of NBBs and aggregate topology. We find the Smoluchowski theory of diffusion-limited cluster-cluster aggregation can be used to describe the aggregation and for certain size ratios, the rate of aggregation follows classical Smoluchowski kinetics. Our results are applicable to DNA- and protein-mediated assembly of collections of quantum dots and other nanoparticles.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_29822668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29822668</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_298226683</originalsourceid><addsrcrecordid>eNqNyjtuwkAQANAtgsT3DlOls7TYBJkS8xEF0ECPNutxNGG8k3h2kbg9FByA6jXvwwystUVmv2zRN0PVX2uns8VsOjBYkbTC6BNjtqYOfcQalqrYfvMdpIGjC6LeMUKViGsKP1Cx-KvCKaaanvtGDvYuRvIIBwkRYeU6FjhRm9hFkjA2vcax4uTlyHxuN-fVLvvr5D-hxktL6pHZBZSkl3xR5vl8XhZvxwedlEkv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29822668</pqid></control><display><type>article</type><title>Biomolecule-Directed Assembly of Nanoscale Building Blocks Studied via Lattice Monte Carlo Simulation</title><source>Alma/SFX Local Collection</source><creator>Chen, T ; Lamm, M H ; Ziff, R ; Glotzer, S C</creator><creatorcontrib>Chen, T ; Lamm, M H ; Ziff, R ; Glotzer, S C</creatorcontrib><description>We perform lattice Monte Carlo simulations to study the assembly of functionalized inorganic nanoscale building blocks into ordered structures using recognitive biomolecule linkers. We develop a coarse-grained lattice model for the nanoscale building block (NBB) and the recognitive linkers. Using this model, we explore how the size ratio of NBB diameter to linker length affects the assembly process and influences the structural properties of the resulting aggregates, including the spatial distribution of NBBs and aggregate topology. We find the Smoluchowski theory of diffusion-limited cluster-cluster aggregation can be used to describe the aggregation and for certain size ratios, the rate of aggregation follows classical Smoluchowski kinetics. Our results are applicable to DNA- and protein-mediated assembly of collections of quantum dots and other nanoparticles.</description><identifier>ISSN: 0003-0503</identifier><language>eng</language><ispartof>Bulletin of the American Physical Society, 2004-03, Vol.49 (1)</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Chen, T</creatorcontrib><creatorcontrib>Lamm, M H</creatorcontrib><creatorcontrib>Ziff, R</creatorcontrib><creatorcontrib>Glotzer, S C</creatorcontrib><title>Biomolecule-Directed Assembly of Nanoscale Building Blocks Studied via Lattice Monte Carlo Simulation</title><title>Bulletin of the American Physical Society</title><description>We perform lattice Monte Carlo simulations to study the assembly of functionalized inorganic nanoscale building blocks into ordered structures using recognitive biomolecule linkers. We develop a coarse-grained lattice model for the nanoscale building block (NBB) and the recognitive linkers. Using this model, we explore how the size ratio of NBB diameter to linker length affects the assembly process and influences the structural properties of the resulting aggregates, including the spatial distribution of NBBs and aggregate topology. We find the Smoluchowski theory of diffusion-limited cluster-cluster aggregation can be used to describe the aggregation and for certain size ratios, the rate of aggregation follows classical Smoluchowski kinetics. Our results are applicable to DNA- and protein-mediated assembly of collections of quantum dots and other nanoparticles.</description><issn>0003-0503</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqNyjtuwkAQANAtgsT3DlOls7TYBJkS8xEF0ECPNutxNGG8k3h2kbg9FByA6jXvwwystUVmv2zRN0PVX2uns8VsOjBYkbTC6BNjtqYOfcQalqrYfvMdpIGjC6LeMUKViGsKP1Cx-KvCKaaanvtGDvYuRvIIBwkRYeU6FjhRm9hFkjA2vcax4uTlyHxuN-fVLvvr5D-hxktL6pHZBZSkl3xR5vl8XhZvxwedlEkv</recordid><startdate>20040301</startdate><enddate>20040301</enddate><creator>Chen, T</creator><creator>Lamm, M H</creator><creator>Ziff, R</creator><creator>Glotzer, S C</creator><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20040301</creationdate><title>Biomolecule-Directed Assembly of Nanoscale Building Blocks Studied via Lattice Monte Carlo Simulation</title><author>Chen, T ; Lamm, M H ; Ziff, R ; Glotzer, S C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_298226683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Chen, T</creatorcontrib><creatorcontrib>Lamm, M H</creatorcontrib><creatorcontrib>Ziff, R</creatorcontrib><creatorcontrib>Glotzer, S C</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Bulletin of the American Physical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, T</au><au>Lamm, M H</au><au>Ziff, R</au><au>Glotzer, S C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomolecule-Directed Assembly of Nanoscale Building Blocks Studied via Lattice Monte Carlo Simulation</atitle><jtitle>Bulletin of the American Physical Society</jtitle><date>2004-03-01</date><risdate>2004</risdate><volume>49</volume><issue>1</issue><issn>0003-0503</issn><abstract>We perform lattice Monte Carlo simulations to study the assembly of functionalized inorganic nanoscale building blocks into ordered structures using recognitive biomolecule linkers. We develop a coarse-grained lattice model for the nanoscale building block (NBB) and the recognitive linkers. Using this model, we explore how the size ratio of NBB diameter to linker length affects the assembly process and influences the structural properties of the resulting aggregates, including the spatial distribution of NBBs and aggregate topology. We find the Smoluchowski theory of diffusion-limited cluster-cluster aggregation can be used to describe the aggregation and for certain size ratios, the rate of aggregation follows classical Smoluchowski kinetics. Our results are applicable to DNA- and protein-mediated assembly of collections of quantum dots and other nanoparticles.</abstract></addata></record>
fulltext fulltext
identifier ISSN: 0003-0503
ispartof Bulletin of the American Physical Society, 2004-03, Vol.49 (1)
issn 0003-0503
language eng
recordid cdi_proquest_miscellaneous_29822668
source Alma/SFX Local Collection
title Biomolecule-Directed Assembly of Nanoscale Building Blocks Studied via Lattice Monte Carlo Simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T07%3A34%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomolecule-Directed%20Assembly%20of%20Nanoscale%20Building%20Blocks%20Studied%20via%20Lattice%20Monte%20Carlo%20Simulation&rft.jtitle=Bulletin%20of%20the%20American%20Physical%20Society&rft.au=Chen,%20T&rft.date=2004-03-01&rft.volume=49&rft.issue=1&rft.issn=0003-0503&rft_id=info:doi/&rft_dat=%3Cproquest%3E29822668%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29822668&rft_id=info:pmid/&rfr_iscdi=true