Effect of methylaluminoxane/transition-metal ratio on the physical properties and chemical composition distributions of ethylene-hexene copolymers produced by a rac-Et(Ind)2ZrCl2/TiCl4/MAO/SMB catalyst

A silica-magnesium bisupport (SMB) was prepared by a sol-gel method for use as a support for the impregnation of TiCl4 and rac-Et(Ind)2ZrCl2. The prepared rac-Et(Ind)2ZrCl2/TiCl4/MAO(methylaluminoxane)/SMB catalyst was applied to the ethylene-hexene copolymerization under the conditions of variable...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European polymer journal 2007-03, Vol.43 (3), p.870-876
Hauptverfasser: Park, Hai Woong, La, Kyung Won, Chung, Jin Suk, Song, In Kyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A silica-magnesium bisupport (SMB) was prepared by a sol-gel method for use as a support for the impregnation of TiCl4 and rac-Et(Ind)2ZrCl2. The prepared rac-Et(Ind)2ZrCl2/TiCl4/MAO(methylaluminoxane)/SMB catalyst was applied to the ethylene-hexene copolymerization under the conditions of variable Al(MAO)/Zr ratio and fixed Al(TEA, triethylaluminum)/Ti ratio. The effect of Al(MAO)/Zr ratio on the physical properties and chemical composition distributions of ethylene-hexene copolymers produced by a rac-Et(Ind)2ZrCl2/TiCl4/MAO/SMB catalyst was investigated. The catalytic activity of rac-Et(Ind)2ZrCl2/TiCl4/MAO/SMB was steadily increased with increasing Al(MAO)/Zr ratio from 200 to 500. The ethylene-hexene copolymer produced with Al(MAO)/Zr=300, 400, and 500 showed two melting points at around 110 deg C and 130 deg C, while that produced with Al(MAO)/Zr=200 showed one melting point at 136 deg C. The number of chemical composition distribution (CCD) peaks was increased from 4 to 7 and the short chain branches of ethylene-hexene copolymer were distributed over lower temperature region with increasing Al(MAO)/Zr ratio. The lamellas in the copolymer were distributed over lower temperature region and the small lamellas in the copolymer were increased with increasing Al(MAO)/Zr ratio. The rac-Et(Ind)2ZrCl2/TiCl4/MAO/SMB catalyst preferably produced a ethylene-hexene copolymer with non-blocky sequence ([EHE]) with increasing Al(MAO)/Zr ratio.
ISSN:0014-3057
1873-1945
DOI:10.1016/j.eurpolymj.2006.12.023