Computational rheooptics of liquid crystal polymers

A computational rheooptical model based on the integration of liquid crystal polymer flow equations and two well-known polarized light transmission methods is formulated and applied to the ubiquitous periodic banded textures observed in sheared lyotropic nematic polymers. The selected optical method...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of non-Newtonian fluid mechanics 2007-04, Vol.143 (1), p.10-21
Hauptverfasser: Hwang, D.K., Han, W.H., Rey, A.D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21
container_issue 1
container_start_page 10
container_title Journal of non-Newtonian fluid mechanics
container_volume 143
creator Hwang, D.K.
Han, W.H.
Rey, A.D.
description A computational rheooptical model based on the integration of liquid crystal polymer flow equations and two well-known polarized light transmission methods is formulated and applied to the ubiquitous periodic banded textures observed in sheared lyotropic nematic polymers. The selected optical methods are the matrix-type Berreman method and the finite-difference time-domain (FDTD) direct numerical simulation method. The optical response of a single unit cell of the periodic banded texture of sheared lyotropic nematic polymers to polarized light propagation under cross-polars is analyzed and correlated to the shear-induced orientation field previously reported in Han and Rey [W.H. Han, A.D. Rey, Theory and simulation of optical banded textures of nematics polymer during shear flow, Macromolecules 28 (1995) 8401–8405]. The role of orientation gradients on the optical response is elucidated and shown to be source of lack of accuracy of the Berreman matrix method. The findings provide robust guidelines on the applicability and accuracy of matrix and direct numerical simulation optical methods. Computational rheooptics of liquid crystal polymers based on the FDTD method is an additional tool to understand flow-induced texture formation when used in the direct forward mode, and in quantitative assessments of rheological material properties when used in backward mode.
doi_str_mv 10.1016/j.jnnfm.2006.11.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29809283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377025706002977</els_id><sourcerecordid>29809283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-601c960644831b8f2e6e6300343b083c43c737f5032732962b47b36dbdd630463</originalsourceid><addsrcrecordid>eNp9kL1OxDAQhC0EEsfBE9CkgS5h7U3spKBAJ_6kk2igthzHEY6SOGcnSPf2GO4kOraZYr-Z1Q4h1xQyCpTfdVk3ju2QMQCeUZpFOSErWgpMGUd6SlaAQqTACnFOLkLoIE6BfEVw44ZpmdVs3aj6xH8a56bZ6pC4NuntbrFNov0-zHE5uX4_GB8uyVmr-mCujromH0-P75uXdPv2_Lp52KYaeT6nHKiuOPA8L5HWZcsMNxwBMMcaStQ5aoGiLQCZQFZxVueiRt7UTROxnOOa3B5yJ-92iwmzHGzQpu_VaNwSJKtKqFiJEcQDqL0LwZtWTt4Oyu8lBflTkOzkb0HypyBJqYwSXTfHeBW06luvRm3Dn7XkBSKKyN0fOBN__bLGy6CtGbVprDd6lo2z_975Bobrewc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29809283</pqid></control><display><type>article</type><title>Computational rheooptics of liquid crystal polymers</title><source>Access via ScienceDirect (Elsevier)</source><creator>Hwang, D.K. ; Han, W.H. ; Rey, A.D.</creator><creatorcontrib>Hwang, D.K. ; Han, W.H. ; Rey, A.D.</creatorcontrib><description>A computational rheooptical model based on the integration of liquid crystal polymer flow equations and two well-known polarized light transmission methods is formulated and applied to the ubiquitous periodic banded textures observed in sheared lyotropic nematic polymers. The selected optical methods are the matrix-type Berreman method and the finite-difference time-domain (FDTD) direct numerical simulation method. The optical response of a single unit cell of the periodic banded texture of sheared lyotropic nematic polymers to polarized light propagation under cross-polars is analyzed and correlated to the shear-induced orientation field previously reported in Han and Rey [W.H. Han, A.D. Rey, Theory and simulation of optical banded textures of nematics polymer during shear flow, Macromolecules 28 (1995) 8401–8405]. The role of orientation gradients on the optical response is elucidated and shown to be source of lack of accuracy of the Berreman matrix method. The findings provide robust guidelines on the applicability and accuracy of matrix and direct numerical simulation optical methods. Computational rheooptics of liquid crystal polymers based on the FDTD method is an additional tool to understand flow-induced texture formation when used in the direct forward mode, and in quantitative assessments of rheological material properties when used in backward mode.</description><identifier>ISSN: 0377-0257</identifier><identifier>EISSN: 1873-2631</identifier><identifier>DOI: 10.1016/j.jnnfm.2006.11.006</identifier><identifier>CODEN: JNFMDI</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Ericksen–Leslie theory ; Exact sciences and technology ; Liquid crystal polymers ; Organic polymers ; Physicochemistry of polymers ; Properties and characterization ; Reooptics ; Rheology and viscoelasticity</subject><ispartof>Journal of non-Newtonian fluid mechanics, 2007-04, Vol.143 (1), p.10-21</ispartof><rights>2007 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-601c960644831b8f2e6e6300343b083c43c737f5032732962b47b36dbdd630463</citedby><cites>FETCH-LOGICAL-c364t-601c960644831b8f2e6e6300343b083c43c737f5032732962b47b36dbdd630463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jnnfm.2006.11.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18653337$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hwang, D.K.</creatorcontrib><creatorcontrib>Han, W.H.</creatorcontrib><creatorcontrib>Rey, A.D.</creatorcontrib><title>Computational rheooptics of liquid crystal polymers</title><title>Journal of non-Newtonian fluid mechanics</title><description>A computational rheooptical model based on the integration of liquid crystal polymer flow equations and two well-known polarized light transmission methods is formulated and applied to the ubiquitous periodic banded textures observed in sheared lyotropic nematic polymers. The selected optical methods are the matrix-type Berreman method and the finite-difference time-domain (FDTD) direct numerical simulation method. The optical response of a single unit cell of the periodic banded texture of sheared lyotropic nematic polymers to polarized light propagation under cross-polars is analyzed and correlated to the shear-induced orientation field previously reported in Han and Rey [W.H. Han, A.D. Rey, Theory and simulation of optical banded textures of nematics polymer during shear flow, Macromolecules 28 (1995) 8401–8405]. The role of orientation gradients on the optical response is elucidated and shown to be source of lack of accuracy of the Berreman matrix method. The findings provide robust guidelines on the applicability and accuracy of matrix and direct numerical simulation optical methods. Computational rheooptics of liquid crystal polymers based on the FDTD method is an additional tool to understand flow-induced texture formation when used in the direct forward mode, and in quantitative assessments of rheological material properties when used in backward mode.</description><subject>Applied sciences</subject><subject>Ericksen–Leslie theory</subject><subject>Exact sciences and technology</subject><subject>Liquid crystal polymers</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><subject>Properties and characterization</subject><subject>Reooptics</subject><subject>Rheology and viscoelasticity</subject><issn>0377-0257</issn><issn>1873-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OxDAQhC0EEsfBE9CkgS5h7U3spKBAJ_6kk2igthzHEY6SOGcnSPf2GO4kOraZYr-Z1Q4h1xQyCpTfdVk3ju2QMQCeUZpFOSErWgpMGUd6SlaAQqTACnFOLkLoIE6BfEVw44ZpmdVs3aj6xH8a56bZ6pC4NuntbrFNov0-zHE5uX4_GB8uyVmr-mCujromH0-P75uXdPv2_Lp52KYaeT6nHKiuOPA8L5HWZcsMNxwBMMcaStQ5aoGiLQCZQFZxVueiRt7UTROxnOOa3B5yJ-92iwmzHGzQpu_VaNwSJKtKqFiJEcQDqL0LwZtWTt4Oyu8lBflTkOzkb0HypyBJqYwSXTfHeBW06luvRm3Dn7XkBSKKyN0fOBN__bLGy6CtGbVprDd6lo2z_975Bobrewc</recordid><startdate>20070416</startdate><enddate>20070416</enddate><creator>Hwang, D.K.</creator><creator>Han, W.H.</creator><creator>Rey, A.D.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20070416</creationdate><title>Computational rheooptics of liquid crystal polymers</title><author>Hwang, D.K. ; Han, W.H. ; Rey, A.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-601c960644831b8f2e6e6300343b083c43c737f5032732962b47b36dbdd630463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Ericksen–Leslie theory</topic><topic>Exact sciences and technology</topic><topic>Liquid crystal polymers</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><topic>Properties and characterization</topic><topic>Reooptics</topic><topic>Rheology and viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hwang, D.K.</creatorcontrib><creatorcontrib>Han, W.H.</creatorcontrib><creatorcontrib>Rey, A.D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of non-Newtonian fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hwang, D.K.</au><au>Han, W.H.</au><au>Rey, A.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational rheooptics of liquid crystal polymers</atitle><jtitle>Journal of non-Newtonian fluid mechanics</jtitle><date>2007-04-16</date><risdate>2007</risdate><volume>143</volume><issue>1</issue><spage>10</spage><epage>21</epage><pages>10-21</pages><issn>0377-0257</issn><eissn>1873-2631</eissn><coden>JNFMDI</coden><abstract>A computational rheooptical model based on the integration of liquid crystal polymer flow equations and two well-known polarized light transmission methods is formulated and applied to the ubiquitous periodic banded textures observed in sheared lyotropic nematic polymers. The selected optical methods are the matrix-type Berreman method and the finite-difference time-domain (FDTD) direct numerical simulation method. The optical response of a single unit cell of the periodic banded texture of sheared lyotropic nematic polymers to polarized light propagation under cross-polars is analyzed and correlated to the shear-induced orientation field previously reported in Han and Rey [W.H. Han, A.D. Rey, Theory and simulation of optical banded textures of nematics polymer during shear flow, Macromolecules 28 (1995) 8401–8405]. The role of orientation gradients on the optical response is elucidated and shown to be source of lack of accuracy of the Berreman matrix method. The findings provide robust guidelines on the applicability and accuracy of matrix and direct numerical simulation optical methods. Computational rheooptics of liquid crystal polymers based on the FDTD method is an additional tool to understand flow-induced texture formation when used in the direct forward mode, and in quantitative assessments of rheological material properties when used in backward mode.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnnfm.2006.11.006</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0377-0257
ispartof Journal of non-Newtonian fluid mechanics, 2007-04, Vol.143 (1), p.10-21
issn 0377-0257
1873-2631
language eng
recordid cdi_proquest_miscellaneous_29809283
source Access via ScienceDirect (Elsevier)
subjects Applied sciences
Ericksen–Leslie theory
Exact sciences and technology
Liquid crystal polymers
Organic polymers
Physicochemistry of polymers
Properties and characterization
Reooptics
Rheology and viscoelasticity
title Computational rheooptics of liquid crystal polymers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A04%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20rheooptics%20of%20liquid%20crystal%20polymers&rft.jtitle=Journal%20of%20non-Newtonian%20fluid%20mechanics&rft.au=Hwang,%20D.K.&rft.date=2007-04-16&rft.volume=143&rft.issue=1&rft.spage=10&rft.epage=21&rft.pages=10-21&rft.issn=0377-0257&rft.eissn=1873-2631&rft.coden=JNFMDI&rft_id=info:doi/10.1016/j.jnnfm.2006.11.006&rft_dat=%3Cproquest_cross%3E29809283%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29809283&rft_id=info:pmid/&rft_els_id=S0377025706002977&rfr_iscdi=true