Constrained MPC under closed-loop uncertainty

The importance of closed-loop uncertainty predictions in robust model-predictive control (MPC) has been discussed by a number of authors in previous years [(A. Bemporad, 1998), (D. Mayne, 2000), (B. Kouvaritakis, 2000)]. The proposed controllers often rely upon invariant sets and require that input...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Warren, A.L., Marlin, T.E.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4612 vol.5
container_issue
container_start_page 4607
container_title
container_volume 5
creator Warren, A.L.
Marlin, T.E.
description The importance of closed-loop uncertainty predictions in robust model-predictive control (MPC) has been discussed by a number of authors in previous years [(A. Bemporad, 1998), (D. Mayne, 2000), (B. Kouvaritakis, 2000)]. The proposed controllers often rely upon invariant sets and require that input constraints are inactive at the final steady-state [(B. Kouvaritakis, 2000), (M. V. Kothare et al., 1996)]. The controller discussed in this paper avoids this limiting assumption while maintaining robust output constraint handling. This paper emphasises the often negative effects of probabilistic input constraints and proposes a method based upon multiple uncertainty regions to deal with these effects. The proposed controller solves a second-order cone program (SOCP) at each execution in order to determine the set of control moves that optimizes the expected performance of the closed-loop system while maintaining the uncertain process outputs and inputs within their allowable bounds. Case studies illustrate the performance of the new controller when plant/model mismatch is present.
doi_str_mv 10.23919/ACC.2004.1384037
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_proquest_miscellaneous_29801488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1384037</ieee_id><sourcerecordid>29801488</sourcerecordid><originalsourceid>FETCH-LOGICAL-i136t-5655969857ee30f75611513e1145e5d425c0a77d8021728cae5029b0bed54d2f3</originalsourceid><addsrcrecordid>eNotkEtLw0AUhQcfYK39AeKmK3cT7507z2UJvqCiC12HNHMDkTSpmWTRf2-ghQMfHD7O4ghxj5ApChieNnmeKQCdIXkN5C7EQpHz0niLl2IVnIc55ImMuxILcJokWgw34jalXwAMwcJCyLzv0jiUTcdx_fGVr6cu8rCu2j5xlG3fH-am4mGcjfF4J67rsk28OnMpfl6ev_M3uf18fc83W9kg2VEaa0ywwRvHTFA7YxENEiNqwyZqZSoonYseFDrlq5INqLCDHUejo6ppKR5Pu4eh_5s4jcW-SRW3bdlxP6VCBQ-ovZ_Fh5PYMHNxGJp9ORyL8yX0DxFMUGI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>29801488</pqid></control><display><type>conference_proceeding</type><title>Constrained MPC under closed-loop uncertainty</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Warren, A.L. ; Marlin, T.E.</creator><creatorcontrib>Warren, A.L. ; Marlin, T.E.</creatorcontrib><description>The importance of closed-loop uncertainty predictions in robust model-predictive control (MPC) has been discussed by a number of authors in previous years [(A. Bemporad, 1998), (D. Mayne, 2000), (B. Kouvaritakis, 2000)]. The proposed controllers often rely upon invariant sets and require that input constraints are inactive at the final steady-state [(B. Kouvaritakis, 2000), (M. V. Kothare et al., 1996)]. The controller discussed in this paper avoids this limiting assumption while maintaining robust output constraint handling. This paper emphasises the often negative effects of probabilistic input constraints and proposes a method based upon multiple uncertainty regions to deal with these effects. The proposed controller solves a second-order cone program (SOCP) at each execution in order to determine the set of control moves that optimizes the expected performance of the closed-loop system while maintaining the uncertain process outputs and inputs within their allowable bounds. Case studies illustrate the performance of the new controller when plant/model mismatch is present.</description><identifier>ISSN: 0743-1619</identifier><identifier>ISBN: 9780780383357</identifier><identifier>ISBN: 0780383354</identifier><identifier>EISSN: 2378-5861</identifier><identifier>DOI: 10.23919/ACC.2004.1384037</identifier><language>eng</language><publisher>IEEE</publisher><subject>Chemical engineering ; Control systems ; Equations ; Open loop systems ; Predictive models ; Robust control ; Robustness ; Steady-state ; Time varying systems ; Uncertainty</subject><ispartof>2004 American Control Conference Proceedings; Volume 5 of 6, 2004, Vol.5, p.4607-4612 vol.5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1384037$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,2058,27924,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1384037$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Warren, A.L.</creatorcontrib><creatorcontrib>Marlin, T.E.</creatorcontrib><title>Constrained MPC under closed-loop uncertainty</title><title>2004 American Control Conference Proceedings; Volume 5 of 6</title><addtitle>ACC</addtitle><description>The importance of closed-loop uncertainty predictions in robust model-predictive control (MPC) has been discussed by a number of authors in previous years [(A. Bemporad, 1998), (D. Mayne, 2000), (B. Kouvaritakis, 2000)]. The proposed controllers often rely upon invariant sets and require that input constraints are inactive at the final steady-state [(B. Kouvaritakis, 2000), (M. V. Kothare et al., 1996)]. The controller discussed in this paper avoids this limiting assumption while maintaining robust output constraint handling. This paper emphasises the often negative effects of probabilistic input constraints and proposes a method based upon multiple uncertainty regions to deal with these effects. The proposed controller solves a second-order cone program (SOCP) at each execution in order to determine the set of control moves that optimizes the expected performance of the closed-loop system while maintaining the uncertain process outputs and inputs within their allowable bounds. Case studies illustrate the performance of the new controller when plant/model mismatch is present.</description><subject>Chemical engineering</subject><subject>Control systems</subject><subject>Equations</subject><subject>Open loop systems</subject><subject>Predictive models</subject><subject>Robust control</subject><subject>Robustness</subject><subject>Steady-state</subject><subject>Time varying systems</subject><subject>Uncertainty</subject><issn>0743-1619</issn><issn>2378-5861</issn><isbn>9780780383357</isbn><isbn>0780383354</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkEtLw0AUhQcfYK39AeKmK3cT7507z2UJvqCiC12HNHMDkTSpmWTRf2-ghQMfHD7O4ghxj5ApChieNnmeKQCdIXkN5C7EQpHz0niLl2IVnIc55ImMuxILcJokWgw34jalXwAMwcJCyLzv0jiUTcdx_fGVr6cu8rCu2j5xlG3fH-am4mGcjfF4J67rsk28OnMpfl6ev_M3uf18fc83W9kg2VEaa0ywwRvHTFA7YxENEiNqwyZqZSoonYseFDrlq5INqLCDHUejo6ppKR5Pu4eh_5s4jcW-SRW3bdlxP6VCBQ-ovZ_Fh5PYMHNxGJp9ORyL8yX0DxFMUGI</recordid><startdate>20040101</startdate><enddate>20040101</enddate><creator>Warren, A.L.</creator><creator>Marlin, T.E.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20040101</creationdate><title>Constrained MPC under closed-loop uncertainty</title><author>Warren, A.L. ; Marlin, T.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i136t-5655969857ee30f75611513e1145e5d425c0a77d8021728cae5029b0bed54d2f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Chemical engineering</topic><topic>Control systems</topic><topic>Equations</topic><topic>Open loop systems</topic><topic>Predictive models</topic><topic>Robust control</topic><topic>Robustness</topic><topic>Steady-state</topic><topic>Time varying systems</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Warren, A.L.</creatorcontrib><creatorcontrib>Marlin, T.E.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Warren, A.L.</au><au>Marlin, T.E.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Constrained MPC under closed-loop uncertainty</atitle><btitle>2004 American Control Conference Proceedings; Volume 5 of 6</btitle><stitle>ACC</stitle><date>2004-01-01</date><risdate>2004</risdate><volume>5</volume><spage>4607</spage><epage>4612 vol.5</epage><pages>4607-4612 vol.5</pages><issn>0743-1619</issn><eissn>2378-5861</eissn><isbn>9780780383357</isbn><isbn>0780383354</isbn><abstract>The importance of closed-loop uncertainty predictions in robust model-predictive control (MPC) has been discussed by a number of authors in previous years [(A. Bemporad, 1998), (D. Mayne, 2000), (B. Kouvaritakis, 2000)]. The proposed controllers often rely upon invariant sets and require that input constraints are inactive at the final steady-state [(B. Kouvaritakis, 2000), (M. V. Kothare et al., 1996)]. The controller discussed in this paper avoids this limiting assumption while maintaining robust output constraint handling. This paper emphasises the often negative effects of probabilistic input constraints and proposes a method based upon multiple uncertainty regions to deal with these effects. The proposed controller solves a second-order cone program (SOCP) at each execution in order to determine the set of control moves that optimizes the expected performance of the closed-loop system while maintaining the uncertain process outputs and inputs within their allowable bounds. Case studies illustrate the performance of the new controller when plant/model mismatch is present.</abstract><pub>IEEE</pub><doi>10.23919/ACC.2004.1384037</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0743-1619
ispartof 2004 American Control Conference Proceedings; Volume 5 of 6, 2004, Vol.5, p.4607-4612 vol.5
issn 0743-1619
2378-5861
language eng
recordid cdi_proquest_miscellaneous_29801488
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Chemical engineering
Control systems
Equations
Open loop systems
Predictive models
Robust control
Robustness
Steady-state
Time varying systems
Uncertainty
title Constrained MPC under closed-loop uncertainty
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T04%3A09%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Constrained%20MPC%20under%20closed-loop%20uncertainty&rft.btitle=2004%20American%20Control%20Conference%20Proceedings;%20Volume%205%20of%206&rft.au=Warren,%20A.L.&rft.date=2004-01-01&rft.volume=5&rft.spage=4607&rft.epage=4612%20vol.5&rft.pages=4607-4612%20vol.5&rft.issn=0743-1619&rft.eissn=2378-5861&rft.isbn=9780780383357&rft.isbn_list=0780383354&rft_id=info:doi/10.23919/ACC.2004.1384037&rft_dat=%3Cproquest_6IE%3E29801488%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29801488&rft_id=info:pmid/&rft_ieee_id=1384037&rfr_iscdi=true