Collisional disruption of weakly sintered porous targets at low-impact velocities
Porous structure is common in the asteroids and satellites of the outer planets. In order to study the relationship between the structure of small bodies and their thermal and collisional evolution, we performed impact disruption experiments on porous sintered targets using a light-gas gun at veloci...
Gespeichert in:
Veröffentlicht in: | Earth, planets, and space planets, and space, 2007-01, Vol.59 (4), p.319-324 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Porous structure is common in the asteroids and satellites of the outer planets. In order to study the relationship between the structure of small bodies and their thermal and collisional evolution, we performed impact disruption experiments on porous sintered targets using a light-gas gun at velocities ranging from 10 to 100 m/s. The sintered glass bead targets were prepared to have roughly the same porosity but with different compressive strengths, ranging over an order of magnitude, by controlling sintering duration and temperature. The results of the impact experiments show that the targets of higher compressive strength have higher impact strengths. However, compared to previous results on impact disruption of porous sintered targets with a collisional velocity of approximately 6 km/s, the values of impact strength in this study were found to be lower by an order of magnitude. |
---|---|
ISSN: | 1343-8832 1880-5981 1880-5981 |
DOI: | 10.1186/bf03353111 |