3D reconstruction of road surfaces using an integrated multi-sensory approach
In this paper, we present our experience in building a mobile imaging system that incorporates multi-modality sensors for road surface mapping and inspection applications. Our proposed system leverages 3D laser-range sensors, video cameras, global positioning systems (GPS) and inertial measurement u...
Gespeichert in:
Veröffentlicht in: | Optics and lasers in engineering 2007-07, Vol.45 (7), p.808-818 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 818 |
---|---|
container_issue | 7 |
container_start_page | 808 |
container_title | Optics and lasers in engineering |
container_volume | 45 |
creator | Yu, Si-Jie Sukumar, Sreenivas R. Koschan, Andreas F. Page, David L. Abidi, Mongi A. |
description | In this paper, we present our experience in building a mobile imaging system that incorporates multi-modality sensors for road surface mapping and inspection applications. Our proposed system leverages 3D laser-range sensors, video cameras, global positioning systems (GPS) and inertial measurement units (IMU) towards the generation of photo-realistic, geometrically accurate, geo-referenced 3D models of road surfaces. Based on our summary of the state-of-the-art systems for a road distress survey, we identify several challenges in the real-time deployment, integration and visualization of the multi-sensor data. Then, we present our data acquisition and processing algorithms as a novel two-stage automation procedure that can meet the accuracy requirements with real-time performance. We provide algorithms for 3D surface reconstruction to process the raw data and deliver detail preserving 3D models that possess accurate depth information for characterization and visualization of cracks as a significant improvement over contemporary commercial video-based vision systems. |
doi_str_mv | 10.1016/j.optlaseng.2006.12.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29769266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0143816606002077</els_id><sourcerecordid>29769266</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-a6ac0ab35ae6728f3c40eb2e082bc67b0fef2452ee5522f8a3b960408c7455a13</originalsourceid><addsrcrecordid>eNqFkEFv3CAQRlHVSt0m-Q3l0tzsDGBj7zFK0iZSql7SMxqzw5aVF7aAK-Xfh9VGzTEnLt-bJx5jXwW0AoS-2rXxUGbMFLatBNCtkC3A8IGtxDioBhTIj2wFolPNKLT-zL7kvINKdkKs2E91yxPZGHJJiy0-Bh4dTxE3PC_JoaXMl-zDlmPgPhTaJiy04ftlLr6p0hzTM8fDoSL2zzn75HDOdPH6nrHf3--ebu6bx18_Hm6uHxurBl0a1GgBJ9Uj6UGOTtkOaJIEo5ysHiZw5GTXS6K-l9KNqKa1hg5GO3R9j0KdscvT3ar9u1AuZu-zpXnGQHHJRq4HvZZa1-FwGtoUc07kzCH5PaZnI8Ac85md-Z_PHPMZIU3NV8lvrwrMFmeXMFif3_BxBKXWR8P1aUf1v_88JZOtp2Bp42vXYjbRv-t6AY5vi1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29769266</pqid></control><display><type>article</type><title>3D reconstruction of road surfaces using an integrated multi-sensory approach</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Yu, Si-Jie ; Sukumar, Sreenivas R. ; Koschan, Andreas F. ; Page, David L. ; Abidi, Mongi A.</creator><creatorcontrib>Yu, Si-Jie ; Sukumar, Sreenivas R. ; Koschan, Andreas F. ; Page, David L. ; Abidi, Mongi A.</creatorcontrib><description>In this paper, we present our experience in building a mobile imaging system that incorporates multi-modality sensors for road surface mapping and inspection applications. Our proposed system leverages 3D laser-range sensors, video cameras, global positioning systems (GPS) and inertial measurement units (IMU) towards the generation of photo-realistic, geometrically accurate, geo-referenced 3D models of road surfaces. Based on our summary of the state-of-the-art systems for a road distress survey, we identify several challenges in the real-time deployment, integration and visualization of the multi-sensor data. Then, we present our data acquisition and processing algorithms as a novel two-stage automation procedure that can meet the accuracy requirements with real-time performance. We provide algorithms for 3D surface reconstruction to process the raw data and deliver detail preserving 3D models that possess accurate depth information for characterization and visualization of cracks as a significant improvement over contemporary commercial video-based vision systems.</description><identifier>ISSN: 0143-8166</identifier><identifier>EISSN: 1873-0302</identifier><identifier>DOI: 10.1016/j.optlaseng.2006.12.007</identifier><identifier>CODEN: OLENDN</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>3D geometric mapping ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Laser range scanning ; Multi-sensor integration ; Optical elements, devices, and systems ; Optics ; Physics ; Range finders, remote sensing devices, laser doppler velocimeters, sar, and lidar ; Road surface reconstruction</subject><ispartof>Optics and lasers in engineering, 2007-07, Vol.45 (7), p.808-818</ispartof><rights>2007 Elsevier Ltd</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-a6ac0ab35ae6728f3c40eb2e082bc67b0fef2452ee5522f8a3b960408c7455a13</citedby><cites>FETCH-LOGICAL-c376t-a6ac0ab35ae6728f3c40eb2e082bc67b0fef2452ee5522f8a3b960408c7455a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.optlaseng.2006.12.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18803396$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Si-Jie</creatorcontrib><creatorcontrib>Sukumar, Sreenivas R.</creatorcontrib><creatorcontrib>Koschan, Andreas F.</creatorcontrib><creatorcontrib>Page, David L.</creatorcontrib><creatorcontrib>Abidi, Mongi A.</creatorcontrib><title>3D reconstruction of road surfaces using an integrated multi-sensory approach</title><title>Optics and lasers in engineering</title><description>In this paper, we present our experience in building a mobile imaging system that incorporates multi-modality sensors for road surface mapping and inspection applications. Our proposed system leverages 3D laser-range sensors, video cameras, global positioning systems (GPS) and inertial measurement units (IMU) towards the generation of photo-realistic, geometrically accurate, geo-referenced 3D models of road surfaces. Based on our summary of the state-of-the-art systems for a road distress survey, we identify several challenges in the real-time deployment, integration and visualization of the multi-sensor data. Then, we present our data acquisition and processing algorithms as a novel two-stage automation procedure that can meet the accuracy requirements with real-time performance. We provide algorithms for 3D surface reconstruction to process the raw data and deliver detail preserving 3D models that possess accurate depth information for characterization and visualization of cracks as a significant improvement over contemporary commercial video-based vision systems.</description><subject>3D geometric mapping</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Laser range scanning</subject><subject>Multi-sensor integration</subject><subject>Optical elements, devices, and systems</subject><subject>Optics</subject><subject>Physics</subject><subject>Range finders, remote sensing devices, laser doppler velocimeters, sar, and lidar</subject><subject>Road surface reconstruction</subject><issn>0143-8166</issn><issn>1873-0302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkEFv3CAQRlHVSt0m-Q3l0tzsDGBj7zFK0iZSql7SMxqzw5aVF7aAK-Xfh9VGzTEnLt-bJx5jXwW0AoS-2rXxUGbMFLatBNCtkC3A8IGtxDioBhTIj2wFolPNKLT-zL7kvINKdkKs2E91yxPZGHJJiy0-Bh4dTxE3PC_JoaXMl-zDlmPgPhTaJiy04ftlLr6p0hzTM8fDoSL2zzn75HDOdPH6nrHf3--ebu6bx18_Hm6uHxurBl0a1GgBJ9Uj6UGOTtkOaJIEo5ysHiZw5GTXS6K-l9KNqKa1hg5GO3R9j0KdscvT3ar9u1AuZu-zpXnGQHHJRq4HvZZa1-FwGtoUc07kzCH5PaZnI8Ac85md-Z_PHPMZIU3NV8lvrwrMFmeXMFif3_BxBKXWR8P1aUf1v_88JZOtp2Bp42vXYjbRv-t6AY5vi1A</recordid><startdate>20070701</startdate><enddate>20070701</enddate><creator>Yu, Si-Jie</creator><creator>Sukumar, Sreenivas R.</creator><creator>Koschan, Andreas F.</creator><creator>Page, David L.</creator><creator>Abidi, Mongi A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20070701</creationdate><title>3D reconstruction of road surfaces using an integrated multi-sensory approach</title><author>Yu, Si-Jie ; Sukumar, Sreenivas R. ; Koschan, Andreas F. ; Page, David L. ; Abidi, Mongi A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-a6ac0ab35ae6728f3c40eb2e082bc67b0fef2452ee5522f8a3b960408c7455a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>3D geometric mapping</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Laser range scanning</topic><topic>Multi-sensor integration</topic><topic>Optical elements, devices, and systems</topic><topic>Optics</topic><topic>Physics</topic><topic>Range finders, remote sensing devices, laser doppler velocimeters, sar, and lidar</topic><topic>Road surface reconstruction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Si-Jie</creatorcontrib><creatorcontrib>Sukumar, Sreenivas R.</creatorcontrib><creatorcontrib>Koschan, Andreas F.</creatorcontrib><creatorcontrib>Page, David L.</creatorcontrib><creatorcontrib>Abidi, Mongi A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Optics and lasers in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Si-Jie</au><au>Sukumar, Sreenivas R.</au><au>Koschan, Andreas F.</au><au>Page, David L.</au><au>Abidi, Mongi A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D reconstruction of road surfaces using an integrated multi-sensory approach</atitle><jtitle>Optics and lasers in engineering</jtitle><date>2007-07-01</date><risdate>2007</risdate><volume>45</volume><issue>7</issue><spage>808</spage><epage>818</epage><pages>808-818</pages><issn>0143-8166</issn><eissn>1873-0302</eissn><coden>OLENDN</coden><abstract>In this paper, we present our experience in building a mobile imaging system that incorporates multi-modality sensors for road surface mapping and inspection applications. Our proposed system leverages 3D laser-range sensors, video cameras, global positioning systems (GPS) and inertial measurement units (IMU) towards the generation of photo-realistic, geometrically accurate, geo-referenced 3D models of road surfaces. Based on our summary of the state-of-the-art systems for a road distress survey, we identify several challenges in the real-time deployment, integration and visualization of the multi-sensor data. Then, we present our data acquisition and processing algorithms as a novel two-stage automation procedure that can meet the accuracy requirements with real-time performance. We provide algorithms for 3D surface reconstruction to process the raw data and deliver detail preserving 3D models that possess accurate depth information for characterization and visualization of cracks as a significant improvement over contemporary commercial video-based vision systems.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.optlaseng.2006.12.007</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0143-8166 |
ispartof | Optics and lasers in engineering, 2007-07, Vol.45 (7), p.808-818 |
issn | 0143-8166 1873-0302 |
language | eng |
recordid | cdi_proquest_miscellaneous_29769266 |
source | Elsevier ScienceDirect Journals Complete |
subjects | 3D geometric mapping Exact sciences and technology Fundamental areas of phenomenology (including applications) Laser range scanning Multi-sensor integration Optical elements, devices, and systems Optics Physics Range finders, remote sensing devices, laser doppler velocimeters, sar, and lidar Road surface reconstruction |
title | 3D reconstruction of road surfaces using an integrated multi-sensory approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A57%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20reconstruction%20of%20road%20surfaces%20using%20an%20integrated%20multi-sensory%20approach&rft.jtitle=Optics%20and%20lasers%20in%20engineering&rft.au=Yu,%20Si-Jie&rft.date=2007-07-01&rft.volume=45&rft.issue=7&rft.spage=808&rft.epage=818&rft.pages=808-818&rft.issn=0143-8166&rft.eissn=1873-0302&rft.coden=OLENDN&rft_id=info:doi/10.1016/j.optlaseng.2006.12.007&rft_dat=%3Cproquest_cross%3E29769266%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29769266&rft_id=info:pmid/&rft_els_id=S0143816606002077&rfr_iscdi=true |