Turbulent channel flow of dilute polymeric solutions: Drag reduction scaling and an eddy viscosity model
Direct numerical simulation of viscoelastic turbulent channel flows up to the maximum drag reduction (MDR) limit has been performed. The simulation results in turn have been used to develop relationships between the flow and fluid rheological parameters, i.e. maximum chain extensibility, Reynolds nu...
Gespeichert in:
Veröffentlicht in: | Journal of non-Newtonian fluid mechanics 2006-12, Vol.139 (3), p.177-189 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 189 |
---|---|
container_issue | 3 |
container_start_page | 177 |
container_title | Journal of non-Newtonian fluid mechanics |
container_volume | 139 |
creator | Li, C.F. Gupta, V.K. Sureshkumar, R. Khomami, B. |
description | Direct numerical simulation of viscoelastic turbulent channel flows up to the maximum drag reduction (MDR) limit has been performed. The simulation results in turn have been used to develop relationships between the flow and fluid rheological parameters, i.e. maximum chain extensibility, Reynolds number,
Re
τ
, and Weissenberg number,
We
τ
and percent drag reduction (%DR) as well as the slope increment of the mean velocity profile. Moreover, based on the trends observed in the mean velocity profile and the overall momentum balance three different regimes of drag reduction (DR), namely, low drag reduction (LDR; 0
≤
%DR
≤
20), high drag reduction (HDR; 20
≤
%DR
≤
52) and MDR (52
≤
%DR
≤
74) have been identified and mathematical expressions for the eddy viscosity in these regimes are presented. It is found that both in LDR and HDR regimes the eddy viscosity varies with the distance from the channel wall. However, in the MDR regime the ratio of the eddy viscosity to the Newtonian one tends to a very small value around 0.1 within the channel. Based on these expressions a procedure that relies on the DNS predictions of the budgets of momentum and viscoelastic shear stress is developed for evaluating the mean velocity profile. |
doi_str_mv | 10.1016/j.jnnfm.2006.04.012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29759232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377025706001571</els_id><sourcerecordid>29759232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-256b0d71bf54e3f115ef3ec7e5985863123c72c48f021e4097a1fbf88f0863</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJgrf4CLzl52zUfu5ut4EHqJxQE6T1sk0mbkk1qsqv035tazw4Mw7yZN8x7CF1TUlJCm9ttufXe9CUjpClJVRLKTtCEtoIXrOH0FE0IF6IgrBbn6CKlLclR82aCNssxrkYHfsBq03kPDhsXvnEwWFs3DoB3we17iFbhFDJgg093-DF2axxBj-oA4KQ6Z_0ad17nxKD1Hn_ZpEKywx73QYO7RGemcwmu_uoUfTw_LeevxeL95W3-sChUxcVQsLpZES3oytQVcENpDYaDElDP2rrNWhhXgqmqNYRRqMhMdNSsTJv7PJ2im-PRXQyfI6RB9vkLcK7zEMYk2UzUM8ZZXuTHRRVDShGM3EXbd3EvKZEHS-VW_loqD5ZKUslsaWbdH1mQBXxZiDIpC16BthHUIHWw__J_AKRhghA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29759232</pqid></control><display><type>article</type><title>Turbulent channel flow of dilute polymeric solutions: Drag reduction scaling and an eddy viscosity model</title><source>Access via ScienceDirect (Elsevier)</source><creator>Li, C.F. ; Gupta, V.K. ; Sureshkumar, R. ; Khomami, B.</creator><creatorcontrib>Li, C.F. ; Gupta, V.K. ; Sureshkumar, R. ; Khomami, B.</creatorcontrib><description>Direct numerical simulation of viscoelastic turbulent channel flows up to the maximum drag reduction (MDR) limit has been performed. The simulation results in turn have been used to develop relationships between the flow and fluid rheological parameters, i.e. maximum chain extensibility, Reynolds number,
Re
τ
, and Weissenberg number,
We
τ
and percent drag reduction (%DR) as well as the slope increment of the mean velocity profile. Moreover, based on the trends observed in the mean velocity profile and the overall momentum balance three different regimes of drag reduction (DR), namely, low drag reduction (LDR; 0
≤
%DR
≤
20), high drag reduction (HDR; 20
≤
%DR
≤
52) and MDR (52
≤
%DR
≤
74) have been identified and mathematical expressions for the eddy viscosity in these regimes are presented. It is found that both in LDR and HDR regimes the eddy viscosity varies with the distance from the channel wall. However, in the MDR regime the ratio of the eddy viscosity to the Newtonian one tends to a very small value around 0.1 within the channel. Based on these expressions a procedure that relies on the DNS predictions of the budgets of momentum and viscoelastic shear stress is developed for evaluating the mean velocity profile.</description><identifier>ISSN: 0377-0257</identifier><identifier>EISSN: 1873-2631</identifier><identifier>DOI: 10.1016/j.jnnfm.2006.04.012</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Direct numerical simulation (DNS) ; Eddy viscosity model ; FENE-P ; Reynolds stress ; Slope increment ; Turbulent drag reduction ; Viscoelastic</subject><ispartof>Journal of non-Newtonian fluid mechanics, 2006-12, Vol.139 (3), p.177-189</ispartof><rights>2006 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-256b0d71bf54e3f115ef3ec7e5985863123c72c48f021e4097a1fbf88f0863</citedby><cites>FETCH-LOGICAL-c437t-256b0d71bf54e3f115ef3ec7e5985863123c72c48f021e4097a1fbf88f0863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jnnfm.2006.04.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Li, C.F.</creatorcontrib><creatorcontrib>Gupta, V.K.</creatorcontrib><creatorcontrib>Sureshkumar, R.</creatorcontrib><creatorcontrib>Khomami, B.</creatorcontrib><title>Turbulent channel flow of dilute polymeric solutions: Drag reduction scaling and an eddy viscosity model</title><title>Journal of non-Newtonian fluid mechanics</title><description>Direct numerical simulation of viscoelastic turbulent channel flows up to the maximum drag reduction (MDR) limit has been performed. The simulation results in turn have been used to develop relationships between the flow and fluid rheological parameters, i.e. maximum chain extensibility, Reynolds number,
Re
τ
, and Weissenberg number,
We
τ
and percent drag reduction (%DR) as well as the slope increment of the mean velocity profile. Moreover, based on the trends observed in the mean velocity profile and the overall momentum balance three different regimes of drag reduction (DR), namely, low drag reduction (LDR; 0
≤
%DR
≤
20), high drag reduction (HDR; 20
≤
%DR
≤
52) and MDR (52
≤
%DR
≤
74) have been identified and mathematical expressions for the eddy viscosity in these regimes are presented. It is found that both in LDR and HDR regimes the eddy viscosity varies with the distance from the channel wall. However, in the MDR regime the ratio of the eddy viscosity to the Newtonian one tends to a very small value around 0.1 within the channel. Based on these expressions a procedure that relies on the DNS predictions of the budgets of momentum and viscoelastic shear stress is developed for evaluating the mean velocity profile.</description><subject>Direct numerical simulation (DNS)</subject><subject>Eddy viscosity model</subject><subject>FENE-P</subject><subject>Reynolds stress</subject><subject>Slope increment</subject><subject>Turbulent drag reduction</subject><subject>Viscoelastic</subject><issn>0377-0257</issn><issn>1873-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEQDaJgrf4CLzl52zUfu5ut4EHqJxQE6T1sk0mbkk1qsqv035tazw4Mw7yZN8x7CF1TUlJCm9ttufXe9CUjpClJVRLKTtCEtoIXrOH0FE0IF6IgrBbn6CKlLclR82aCNssxrkYHfsBq03kPDhsXvnEwWFs3DoB3we17iFbhFDJgg093-DF2axxBj-oA4KQ6Z_0ad17nxKD1Hn_ZpEKywx73QYO7RGemcwmu_uoUfTw_LeevxeL95W3-sChUxcVQsLpZES3oytQVcENpDYaDElDP2rrNWhhXgqmqNYRRqMhMdNSsTJv7PJ2im-PRXQyfI6RB9vkLcK7zEMYk2UzUM8ZZXuTHRRVDShGM3EXbd3EvKZEHS-VW_loqD5ZKUslsaWbdH1mQBXxZiDIpC16BthHUIHWw__J_AKRhghA</recordid><startdate>20061201</startdate><enddate>20061201</enddate><creator>Li, C.F.</creator><creator>Gupta, V.K.</creator><creator>Sureshkumar, R.</creator><creator>Khomami, B.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20061201</creationdate><title>Turbulent channel flow of dilute polymeric solutions: Drag reduction scaling and an eddy viscosity model</title><author>Li, C.F. ; Gupta, V.K. ; Sureshkumar, R. ; Khomami, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-256b0d71bf54e3f115ef3ec7e5985863123c72c48f021e4097a1fbf88f0863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Direct numerical simulation (DNS)</topic><topic>Eddy viscosity model</topic><topic>FENE-P</topic><topic>Reynolds stress</topic><topic>Slope increment</topic><topic>Turbulent drag reduction</topic><topic>Viscoelastic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, C.F.</creatorcontrib><creatorcontrib>Gupta, V.K.</creatorcontrib><creatorcontrib>Sureshkumar, R.</creatorcontrib><creatorcontrib>Khomami, B.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of non-Newtonian fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, C.F.</au><au>Gupta, V.K.</au><au>Sureshkumar, R.</au><au>Khomami, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Turbulent channel flow of dilute polymeric solutions: Drag reduction scaling and an eddy viscosity model</atitle><jtitle>Journal of non-Newtonian fluid mechanics</jtitle><date>2006-12-01</date><risdate>2006</risdate><volume>139</volume><issue>3</issue><spage>177</spage><epage>189</epage><pages>177-189</pages><issn>0377-0257</issn><eissn>1873-2631</eissn><abstract>Direct numerical simulation of viscoelastic turbulent channel flows up to the maximum drag reduction (MDR) limit has been performed. The simulation results in turn have been used to develop relationships between the flow and fluid rheological parameters, i.e. maximum chain extensibility, Reynolds number,
Re
τ
, and Weissenberg number,
We
τ
and percent drag reduction (%DR) as well as the slope increment of the mean velocity profile. Moreover, based on the trends observed in the mean velocity profile and the overall momentum balance three different regimes of drag reduction (DR), namely, low drag reduction (LDR; 0
≤
%DR
≤
20), high drag reduction (HDR; 20
≤
%DR
≤
52) and MDR (52
≤
%DR
≤
74) have been identified and mathematical expressions for the eddy viscosity in these regimes are presented. It is found that both in LDR and HDR regimes the eddy viscosity varies with the distance from the channel wall. However, in the MDR regime the ratio of the eddy viscosity to the Newtonian one tends to a very small value around 0.1 within the channel. Based on these expressions a procedure that relies on the DNS predictions of the budgets of momentum and viscoelastic shear stress is developed for evaluating the mean velocity profile.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jnnfm.2006.04.012</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-0257 |
ispartof | Journal of non-Newtonian fluid mechanics, 2006-12, Vol.139 (3), p.177-189 |
issn | 0377-0257 1873-2631 |
language | eng |
recordid | cdi_proquest_miscellaneous_29759232 |
source | Access via ScienceDirect (Elsevier) |
subjects | Direct numerical simulation (DNS) Eddy viscosity model FENE-P Reynolds stress Slope increment Turbulent drag reduction Viscoelastic |
title | Turbulent channel flow of dilute polymeric solutions: Drag reduction scaling and an eddy viscosity model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T08%3A00%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Turbulent%20channel%20flow%20of%20dilute%20polymeric%20solutions:%20Drag%20reduction%20scaling%20and%20an%20eddy%20viscosity%20model&rft.jtitle=Journal%20of%20non-Newtonian%20fluid%20mechanics&rft.au=Li,%20C.F.&rft.date=2006-12-01&rft.volume=139&rft.issue=3&rft.spage=177&rft.epage=189&rft.pages=177-189&rft.issn=0377-0257&rft.eissn=1873-2631&rft_id=info:doi/10.1016/j.jnnfm.2006.04.012&rft_dat=%3Cproquest_cross%3E29759232%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29759232&rft_id=info:pmid/&rft_els_id=S0377025706001571&rfr_iscdi=true |