Turbulent channel flow of dilute polymeric solutions: Drag reduction scaling and an eddy viscosity model

Direct numerical simulation of viscoelastic turbulent channel flows up to the maximum drag reduction (MDR) limit has been performed. The simulation results in turn have been used to develop relationships between the flow and fluid rheological parameters, i.e. maximum chain extensibility, Reynolds nu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of non-Newtonian fluid mechanics 2006-12, Vol.139 (3), p.177-189
Hauptverfasser: Li, C.F., Gupta, V.K., Sureshkumar, R., Khomami, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 189
container_issue 3
container_start_page 177
container_title Journal of non-Newtonian fluid mechanics
container_volume 139
creator Li, C.F.
Gupta, V.K.
Sureshkumar, R.
Khomami, B.
description Direct numerical simulation of viscoelastic turbulent channel flows up to the maximum drag reduction (MDR) limit has been performed. The simulation results in turn have been used to develop relationships between the flow and fluid rheological parameters, i.e. maximum chain extensibility, Reynolds number, Re τ , and Weissenberg number, We τ and percent drag reduction (%DR) as well as the slope increment of the mean velocity profile. Moreover, based on the trends observed in the mean velocity profile and the overall momentum balance three different regimes of drag reduction (DR), namely, low drag reduction (LDR; 0 ≤ %DR ≤ 20), high drag reduction (HDR; 20 ≤ %DR ≤ 52) and MDR (52 ≤ %DR ≤ 74) have been identified and mathematical expressions for the eddy viscosity in these regimes are presented. It is found that both in LDR and HDR regimes the eddy viscosity varies with the distance from the channel wall. However, in the MDR regime the ratio of the eddy viscosity to the Newtonian one tends to a very small value around 0.1 within the channel. Based on these expressions a procedure that relies on the DNS predictions of the budgets of momentum and viscoelastic shear stress is developed for evaluating the mean velocity profile.
doi_str_mv 10.1016/j.jnnfm.2006.04.012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29759232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377025706001571</els_id><sourcerecordid>29759232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-256b0d71bf54e3f115ef3ec7e5985863123c72c48f021e4097a1fbf88f0863</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJgrf4CLzl52zUfu5ut4EHqJxQE6T1sk0mbkk1qsqv035tazw4Mw7yZN8x7CF1TUlJCm9ttufXe9CUjpClJVRLKTtCEtoIXrOH0FE0IF6IgrBbn6CKlLclR82aCNssxrkYHfsBq03kPDhsXvnEwWFs3DoB3we17iFbhFDJgg093-DF2axxBj-oA4KQ6Z_0ad17nxKD1Hn_ZpEKywx73QYO7RGemcwmu_uoUfTw_LeevxeL95W3-sChUxcVQsLpZES3oytQVcENpDYaDElDP2rrNWhhXgqmqNYRRqMhMdNSsTJv7PJ2im-PRXQyfI6RB9vkLcK7zEMYk2UzUM8ZZXuTHRRVDShGM3EXbd3EvKZEHS-VW_loqD5ZKUslsaWbdH1mQBXxZiDIpC16BthHUIHWw__J_AKRhghA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29759232</pqid></control><display><type>article</type><title>Turbulent channel flow of dilute polymeric solutions: Drag reduction scaling and an eddy viscosity model</title><source>Access via ScienceDirect (Elsevier)</source><creator>Li, C.F. ; Gupta, V.K. ; Sureshkumar, R. ; Khomami, B.</creator><creatorcontrib>Li, C.F. ; Gupta, V.K. ; Sureshkumar, R. ; Khomami, B.</creatorcontrib><description>Direct numerical simulation of viscoelastic turbulent channel flows up to the maximum drag reduction (MDR) limit has been performed. The simulation results in turn have been used to develop relationships between the flow and fluid rheological parameters, i.e. maximum chain extensibility, Reynolds number, Re τ , and Weissenberg number, We τ and percent drag reduction (%DR) as well as the slope increment of the mean velocity profile. Moreover, based on the trends observed in the mean velocity profile and the overall momentum balance three different regimes of drag reduction (DR), namely, low drag reduction (LDR; 0 ≤ %DR ≤ 20), high drag reduction (HDR; 20 ≤ %DR ≤ 52) and MDR (52 ≤ %DR ≤ 74) have been identified and mathematical expressions for the eddy viscosity in these regimes are presented. It is found that both in LDR and HDR regimes the eddy viscosity varies with the distance from the channel wall. However, in the MDR regime the ratio of the eddy viscosity to the Newtonian one tends to a very small value around 0.1 within the channel. Based on these expressions a procedure that relies on the DNS predictions of the budgets of momentum and viscoelastic shear stress is developed for evaluating the mean velocity profile.</description><identifier>ISSN: 0377-0257</identifier><identifier>EISSN: 1873-2631</identifier><identifier>DOI: 10.1016/j.jnnfm.2006.04.012</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Direct numerical simulation (DNS) ; Eddy viscosity model ; FENE-P ; Reynolds stress ; Slope increment ; Turbulent drag reduction ; Viscoelastic</subject><ispartof>Journal of non-Newtonian fluid mechanics, 2006-12, Vol.139 (3), p.177-189</ispartof><rights>2006 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-256b0d71bf54e3f115ef3ec7e5985863123c72c48f021e4097a1fbf88f0863</citedby><cites>FETCH-LOGICAL-c437t-256b0d71bf54e3f115ef3ec7e5985863123c72c48f021e4097a1fbf88f0863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jnnfm.2006.04.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Li, C.F.</creatorcontrib><creatorcontrib>Gupta, V.K.</creatorcontrib><creatorcontrib>Sureshkumar, R.</creatorcontrib><creatorcontrib>Khomami, B.</creatorcontrib><title>Turbulent channel flow of dilute polymeric solutions: Drag reduction scaling and an eddy viscosity model</title><title>Journal of non-Newtonian fluid mechanics</title><description>Direct numerical simulation of viscoelastic turbulent channel flows up to the maximum drag reduction (MDR) limit has been performed. The simulation results in turn have been used to develop relationships between the flow and fluid rheological parameters, i.e. maximum chain extensibility, Reynolds number, Re τ , and Weissenberg number, We τ and percent drag reduction (%DR) as well as the slope increment of the mean velocity profile. Moreover, based on the trends observed in the mean velocity profile and the overall momentum balance three different regimes of drag reduction (DR), namely, low drag reduction (LDR; 0 ≤ %DR ≤ 20), high drag reduction (HDR; 20 ≤ %DR ≤ 52) and MDR (52 ≤ %DR ≤ 74) have been identified and mathematical expressions for the eddy viscosity in these regimes are presented. It is found that both in LDR and HDR regimes the eddy viscosity varies with the distance from the channel wall. However, in the MDR regime the ratio of the eddy viscosity to the Newtonian one tends to a very small value around 0.1 within the channel. Based on these expressions a procedure that relies on the DNS predictions of the budgets of momentum and viscoelastic shear stress is developed for evaluating the mean velocity profile.</description><subject>Direct numerical simulation (DNS)</subject><subject>Eddy viscosity model</subject><subject>FENE-P</subject><subject>Reynolds stress</subject><subject>Slope increment</subject><subject>Turbulent drag reduction</subject><subject>Viscoelastic</subject><issn>0377-0257</issn><issn>1873-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEQDaJgrf4CLzl52zUfu5ut4EHqJxQE6T1sk0mbkk1qsqv035tazw4Mw7yZN8x7CF1TUlJCm9ttufXe9CUjpClJVRLKTtCEtoIXrOH0FE0IF6IgrBbn6CKlLclR82aCNssxrkYHfsBq03kPDhsXvnEwWFs3DoB3we17iFbhFDJgg093-DF2axxBj-oA4KQ6Z_0ad17nxKD1Hn_ZpEKywx73QYO7RGemcwmu_uoUfTw_LeevxeL95W3-sChUxcVQsLpZES3oytQVcENpDYaDElDP2rrNWhhXgqmqNYRRqMhMdNSsTJv7PJ2im-PRXQyfI6RB9vkLcK7zEMYk2UzUM8ZZXuTHRRVDShGM3EXbd3EvKZEHS-VW_loqD5ZKUslsaWbdH1mQBXxZiDIpC16BthHUIHWw__J_AKRhghA</recordid><startdate>20061201</startdate><enddate>20061201</enddate><creator>Li, C.F.</creator><creator>Gupta, V.K.</creator><creator>Sureshkumar, R.</creator><creator>Khomami, B.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20061201</creationdate><title>Turbulent channel flow of dilute polymeric solutions: Drag reduction scaling and an eddy viscosity model</title><author>Li, C.F. ; Gupta, V.K. ; Sureshkumar, R. ; Khomami, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-256b0d71bf54e3f115ef3ec7e5985863123c72c48f021e4097a1fbf88f0863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Direct numerical simulation (DNS)</topic><topic>Eddy viscosity model</topic><topic>FENE-P</topic><topic>Reynolds stress</topic><topic>Slope increment</topic><topic>Turbulent drag reduction</topic><topic>Viscoelastic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, C.F.</creatorcontrib><creatorcontrib>Gupta, V.K.</creatorcontrib><creatorcontrib>Sureshkumar, R.</creatorcontrib><creatorcontrib>Khomami, B.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of non-Newtonian fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, C.F.</au><au>Gupta, V.K.</au><au>Sureshkumar, R.</au><au>Khomami, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Turbulent channel flow of dilute polymeric solutions: Drag reduction scaling and an eddy viscosity model</atitle><jtitle>Journal of non-Newtonian fluid mechanics</jtitle><date>2006-12-01</date><risdate>2006</risdate><volume>139</volume><issue>3</issue><spage>177</spage><epage>189</epage><pages>177-189</pages><issn>0377-0257</issn><eissn>1873-2631</eissn><abstract>Direct numerical simulation of viscoelastic turbulent channel flows up to the maximum drag reduction (MDR) limit has been performed. The simulation results in turn have been used to develop relationships between the flow and fluid rheological parameters, i.e. maximum chain extensibility, Reynolds number, Re τ , and Weissenberg number, We τ and percent drag reduction (%DR) as well as the slope increment of the mean velocity profile. Moreover, based on the trends observed in the mean velocity profile and the overall momentum balance three different regimes of drag reduction (DR), namely, low drag reduction (LDR; 0 ≤ %DR ≤ 20), high drag reduction (HDR; 20 ≤ %DR ≤ 52) and MDR (52 ≤ %DR ≤ 74) have been identified and mathematical expressions for the eddy viscosity in these regimes are presented. It is found that both in LDR and HDR regimes the eddy viscosity varies with the distance from the channel wall. However, in the MDR regime the ratio of the eddy viscosity to the Newtonian one tends to a very small value around 0.1 within the channel. Based on these expressions a procedure that relies on the DNS predictions of the budgets of momentum and viscoelastic shear stress is developed for evaluating the mean velocity profile.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jnnfm.2006.04.012</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0377-0257
ispartof Journal of non-Newtonian fluid mechanics, 2006-12, Vol.139 (3), p.177-189
issn 0377-0257
1873-2631
language eng
recordid cdi_proquest_miscellaneous_29759232
source Access via ScienceDirect (Elsevier)
subjects Direct numerical simulation (DNS)
Eddy viscosity model
FENE-P
Reynolds stress
Slope increment
Turbulent drag reduction
Viscoelastic
title Turbulent channel flow of dilute polymeric solutions: Drag reduction scaling and an eddy viscosity model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T08%3A00%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Turbulent%20channel%20flow%20of%20dilute%20polymeric%20solutions:%20Drag%20reduction%20scaling%20and%20an%20eddy%20viscosity%20model&rft.jtitle=Journal%20of%20non-Newtonian%20fluid%20mechanics&rft.au=Li,%20C.F.&rft.date=2006-12-01&rft.volume=139&rft.issue=3&rft.spage=177&rft.epage=189&rft.pages=177-189&rft.issn=0377-0257&rft.eissn=1873-2631&rft_id=info:doi/10.1016/j.jnnfm.2006.04.012&rft_dat=%3Cproquest_cross%3E29759232%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29759232&rft_id=info:pmid/&rft_els_id=S0377025706001571&rfr_iscdi=true