The strongest rotating rod

By using the Rayleigh quotient, we present the variational formulation for the strongest rotating rod stable against buckling. This variational formulation is converted to fifth-order singular non-linear boundary value problem. The optimal shape and the critical rotating speed are determined with sp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of non-linear mechanics 2005-06, Vol.40 (5), p.747-754
Hauptverfasser: Atanackovic, T.M., Braun, D.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 754
container_issue 5
container_start_page 747
container_title International journal of non-linear mechanics
container_volume 40
creator Atanackovic, T.M.
Braun, D.J.
description By using the Rayleigh quotient, we present the variational formulation for the strongest rotating rod stable against buckling. This variational formulation is converted to fifth-order singular non-linear boundary value problem. The optimal shape and the critical rotating speed are determined with special numerical–analytical integration procedure. We found the explicit linear relation between the volume and the squared critical speed. Although, in general, the linear stability problem for the optimal rotating rod does not have purely discrete spectra, we show that in the present case, the critical speed is determined with lowest eigenvalue. This fact verifies our optimization strategy based on a linear spectral problem.
doi_str_mv 10.1016/j.ijnonlinmec.2004.09.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29751357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002074620400157X</els_id><sourcerecordid>29751357</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-3d851d1afa58dd85a12a916ccc554e701eb9ea9aa3255ed45b868175d347c18c3</originalsourceid><addsrcrecordid>eNqNUD1PwzAUtBBIhMIfYCoLW4I_4tgeUQUFqRJLmS3Xfi2OErvYKRL_HldlYGR6p6e7090hdEdwQzDpHvrG9yGGwYcRbEMxbhusGozpGaqIFLLmHZPnqCofXIu2o5foKuceF22LRYVu1x8wz1OKYQd5mqc4mcmHXQHuGl1szZDh5vfO0Pvz03rxUq_elq-Lx1VtGadTzZzkxBGzNVy6gg2hRpHOWst5CwIT2CgwyhhGOQfX8o3sJBHcsVZYIi2bofuT7z7Fz0NJoUefLQyDCRAPWVMlOGFcFKI6EW2KOSfY6n3yo0nfmmB9XEP3-s8a-riGxkqX7kW7OGmhNPnykHS2HoIF5xPYSbvo_-HyA3p3ba0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29751357</pqid></control><display><type>article</type><title>The strongest rotating rod</title><source>Elsevier ScienceDirect Journals</source><creator>Atanackovic, T.M. ; Braun, D.J.</creator><creatorcontrib>Atanackovic, T.M. ; Braun, D.J.</creatorcontrib><description>By using the Rayleigh quotient, we present the variational formulation for the strongest rotating rod stable against buckling. This variational formulation is converted to fifth-order singular non-linear boundary value problem. The optimal shape and the critical rotating speed are determined with special numerical–analytical integration procedure. We found the explicit linear relation between the volume and the squared critical speed. Although, in general, the linear stability problem for the optimal rotating rod does not have purely discrete spectra, we show that in the present case, the critical speed is determined with lowest eigenvalue. This fact verifies our optimization strategy based on a linear spectral problem.</description><identifier>ISSN: 0020-7462</identifier><identifier>EISSN: 1878-5638</identifier><identifier>DOI: 10.1016/j.ijnonlinmec.2004.09.002</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Optimal shape ; Pontryagin's principle ; Rotating rod</subject><ispartof>International journal of non-linear mechanics, 2005-06, Vol.40 (5), p.747-754</ispartof><rights>2004 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-3d851d1afa58dd85a12a916ccc554e701eb9ea9aa3255ed45b868175d347c18c3</citedby><cites>FETCH-LOGICAL-c352t-3d851d1afa58dd85a12a916ccc554e701eb9ea9aa3255ed45b868175d347c18c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijnonlinmec.2004.09.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Atanackovic, T.M.</creatorcontrib><creatorcontrib>Braun, D.J.</creatorcontrib><title>The strongest rotating rod</title><title>International journal of non-linear mechanics</title><description>By using the Rayleigh quotient, we present the variational formulation for the strongest rotating rod stable against buckling. This variational formulation is converted to fifth-order singular non-linear boundary value problem. The optimal shape and the critical rotating speed are determined with special numerical–analytical integration procedure. We found the explicit linear relation between the volume and the squared critical speed. Although, in general, the linear stability problem for the optimal rotating rod does not have purely discrete spectra, we show that in the present case, the critical speed is determined with lowest eigenvalue. This fact verifies our optimization strategy based on a linear spectral problem.</description><subject>Optimal shape</subject><subject>Pontryagin's principle</subject><subject>Rotating rod</subject><issn>0020-7462</issn><issn>1878-5638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNUD1PwzAUtBBIhMIfYCoLW4I_4tgeUQUFqRJLmS3Xfi2OErvYKRL_HldlYGR6p6e7090hdEdwQzDpHvrG9yGGwYcRbEMxbhusGozpGaqIFLLmHZPnqCofXIu2o5foKuceF22LRYVu1x8wz1OKYQd5mqc4mcmHXQHuGl1szZDh5vfO0Pvz03rxUq_elq-Lx1VtGadTzZzkxBGzNVy6gg2hRpHOWst5CwIT2CgwyhhGOQfX8o3sJBHcsVZYIi2bofuT7z7Fz0NJoUefLQyDCRAPWVMlOGFcFKI6EW2KOSfY6n3yo0nfmmB9XEP3-s8a-riGxkqX7kW7OGmhNPnykHS2HoIF5xPYSbvo_-HyA3p3ba0</recordid><startdate>20050601</startdate><enddate>20050601</enddate><creator>Atanackovic, T.M.</creator><creator>Braun, D.J.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20050601</creationdate><title>The strongest rotating rod</title><author>Atanackovic, T.M. ; Braun, D.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-3d851d1afa58dd85a12a916ccc554e701eb9ea9aa3255ed45b868175d347c18c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Optimal shape</topic><topic>Pontryagin's principle</topic><topic>Rotating rod</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Atanackovic, T.M.</creatorcontrib><creatorcontrib>Braun, D.J.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of non-linear mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Atanackovic, T.M.</au><au>Braun, D.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The strongest rotating rod</atitle><jtitle>International journal of non-linear mechanics</jtitle><date>2005-06-01</date><risdate>2005</risdate><volume>40</volume><issue>5</issue><spage>747</spage><epage>754</epage><pages>747-754</pages><issn>0020-7462</issn><eissn>1878-5638</eissn><abstract>By using the Rayleigh quotient, we present the variational formulation for the strongest rotating rod stable against buckling. This variational formulation is converted to fifth-order singular non-linear boundary value problem. The optimal shape and the critical rotating speed are determined with special numerical–analytical integration procedure. We found the explicit linear relation between the volume and the squared critical speed. Although, in general, the linear stability problem for the optimal rotating rod does not have purely discrete spectra, we show that in the present case, the critical speed is determined with lowest eigenvalue. This fact verifies our optimization strategy based on a linear spectral problem.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijnonlinmec.2004.09.002</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7462
ispartof International journal of non-linear mechanics, 2005-06, Vol.40 (5), p.747-754
issn 0020-7462
1878-5638
language eng
recordid cdi_proquest_miscellaneous_29751357
source Elsevier ScienceDirect Journals
subjects Optimal shape
Pontryagin's principle
Rotating rod
title The strongest rotating rod
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A23%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20strongest%20rotating%20rod&rft.jtitle=International%20journal%20of%20non-linear%20mechanics&rft.au=Atanackovic,%20T.M.&rft.date=2005-06-01&rft.volume=40&rft.issue=5&rft.spage=747&rft.epage=754&rft.pages=747-754&rft.issn=0020-7462&rft.eissn=1878-5638&rft_id=info:doi/10.1016/j.ijnonlinmec.2004.09.002&rft_dat=%3Cproquest_cross%3E29751357%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29751357&rft_id=info:pmid/&rft_els_id=S002074620400157X&rfr_iscdi=true