The strongest rotating rod
By using the Rayleigh quotient, we present the variational formulation for the strongest rotating rod stable against buckling. This variational formulation is converted to fifth-order singular non-linear boundary value problem. The optimal shape and the critical rotating speed are determined with sp...
Gespeichert in:
Veröffentlicht in: | International journal of non-linear mechanics 2005-06, Vol.40 (5), p.747-754 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 754 |
---|---|
container_issue | 5 |
container_start_page | 747 |
container_title | International journal of non-linear mechanics |
container_volume | 40 |
creator | Atanackovic, T.M. Braun, D.J. |
description | By using the Rayleigh quotient, we present the variational formulation for the strongest rotating rod stable against buckling. This variational formulation is converted to fifth-order singular non-linear boundary value problem. The optimal shape and the critical rotating speed are determined with special numerical–analytical integration procedure. We found the explicit linear relation between the volume and the squared critical speed. Although, in general, the linear stability problem for the optimal rotating rod does not have purely discrete spectra, we show that in the present case, the critical speed is determined with lowest eigenvalue. This fact verifies our optimization strategy based on a linear spectral problem. |
doi_str_mv | 10.1016/j.ijnonlinmec.2004.09.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29751357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002074620400157X</els_id><sourcerecordid>29751357</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-3d851d1afa58dd85a12a916ccc554e701eb9ea9aa3255ed45b868175d347c18c3</originalsourceid><addsrcrecordid>eNqNUD1PwzAUtBBIhMIfYCoLW4I_4tgeUQUFqRJLmS3Xfi2OErvYKRL_HldlYGR6p6e7090hdEdwQzDpHvrG9yGGwYcRbEMxbhusGozpGaqIFLLmHZPnqCofXIu2o5foKuceF22LRYVu1x8wz1OKYQd5mqc4mcmHXQHuGl1szZDh5vfO0Pvz03rxUq_elq-Lx1VtGadTzZzkxBGzNVy6gg2hRpHOWst5CwIT2CgwyhhGOQfX8o3sJBHcsVZYIi2bofuT7z7Fz0NJoUefLQyDCRAPWVMlOGFcFKI6EW2KOSfY6n3yo0nfmmB9XEP3-s8a-riGxkqX7kW7OGmhNPnykHS2HoIF5xPYSbvo_-HyA3p3ba0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29751357</pqid></control><display><type>article</type><title>The strongest rotating rod</title><source>Elsevier ScienceDirect Journals</source><creator>Atanackovic, T.M. ; Braun, D.J.</creator><creatorcontrib>Atanackovic, T.M. ; Braun, D.J.</creatorcontrib><description>By using the Rayleigh quotient, we present the variational formulation for the strongest rotating rod stable against buckling. This variational formulation is converted to fifth-order singular non-linear boundary value problem. The optimal shape and the critical rotating speed are determined with special numerical–analytical integration procedure. We found the explicit linear relation between the volume and the squared critical speed. Although, in general, the linear stability problem for the optimal rotating rod does not have purely discrete spectra, we show that in the present case, the critical speed is determined with lowest eigenvalue. This fact verifies our optimization strategy based on a linear spectral problem.</description><identifier>ISSN: 0020-7462</identifier><identifier>EISSN: 1878-5638</identifier><identifier>DOI: 10.1016/j.ijnonlinmec.2004.09.002</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Optimal shape ; Pontryagin's principle ; Rotating rod</subject><ispartof>International journal of non-linear mechanics, 2005-06, Vol.40 (5), p.747-754</ispartof><rights>2004 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-3d851d1afa58dd85a12a916ccc554e701eb9ea9aa3255ed45b868175d347c18c3</citedby><cites>FETCH-LOGICAL-c352t-3d851d1afa58dd85a12a916ccc554e701eb9ea9aa3255ed45b868175d347c18c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijnonlinmec.2004.09.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Atanackovic, T.M.</creatorcontrib><creatorcontrib>Braun, D.J.</creatorcontrib><title>The strongest rotating rod</title><title>International journal of non-linear mechanics</title><description>By using the Rayleigh quotient, we present the variational formulation for the strongest rotating rod stable against buckling. This variational formulation is converted to fifth-order singular non-linear boundary value problem. The optimal shape and the critical rotating speed are determined with special numerical–analytical integration procedure. We found the explicit linear relation between the volume and the squared critical speed. Although, in general, the linear stability problem for the optimal rotating rod does not have purely discrete spectra, we show that in the present case, the critical speed is determined with lowest eigenvalue. This fact verifies our optimization strategy based on a linear spectral problem.</description><subject>Optimal shape</subject><subject>Pontryagin's principle</subject><subject>Rotating rod</subject><issn>0020-7462</issn><issn>1878-5638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNUD1PwzAUtBBIhMIfYCoLW4I_4tgeUQUFqRJLmS3Xfi2OErvYKRL_HldlYGR6p6e7090hdEdwQzDpHvrG9yGGwYcRbEMxbhusGozpGaqIFLLmHZPnqCofXIu2o5foKuceF22LRYVu1x8wz1OKYQd5mqc4mcmHXQHuGl1szZDh5vfO0Pvz03rxUq_elq-Lx1VtGadTzZzkxBGzNVy6gg2hRpHOWst5CwIT2CgwyhhGOQfX8o3sJBHcsVZYIi2bofuT7z7Fz0NJoUefLQyDCRAPWVMlOGFcFKI6EW2KOSfY6n3yo0nfmmB9XEP3-s8a-riGxkqX7kW7OGmhNPnykHS2HoIF5xPYSbvo_-HyA3p3ba0</recordid><startdate>20050601</startdate><enddate>20050601</enddate><creator>Atanackovic, T.M.</creator><creator>Braun, D.J.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20050601</creationdate><title>The strongest rotating rod</title><author>Atanackovic, T.M. ; Braun, D.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-3d851d1afa58dd85a12a916ccc554e701eb9ea9aa3255ed45b868175d347c18c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Optimal shape</topic><topic>Pontryagin's principle</topic><topic>Rotating rod</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Atanackovic, T.M.</creatorcontrib><creatorcontrib>Braun, D.J.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of non-linear mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Atanackovic, T.M.</au><au>Braun, D.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The strongest rotating rod</atitle><jtitle>International journal of non-linear mechanics</jtitle><date>2005-06-01</date><risdate>2005</risdate><volume>40</volume><issue>5</issue><spage>747</spage><epage>754</epage><pages>747-754</pages><issn>0020-7462</issn><eissn>1878-5638</eissn><abstract>By using the Rayleigh quotient, we present the variational formulation for the strongest rotating rod stable against buckling. This variational formulation is converted to fifth-order singular non-linear boundary value problem. The optimal shape and the critical rotating speed are determined with special numerical–analytical integration procedure. We found the explicit linear relation between the volume and the squared critical speed. Although, in general, the linear stability problem for the optimal rotating rod does not have purely discrete spectra, we show that in the present case, the critical speed is determined with lowest eigenvalue. This fact verifies our optimization strategy based on a linear spectral problem.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijnonlinmec.2004.09.002</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7462 |
ispartof | International journal of non-linear mechanics, 2005-06, Vol.40 (5), p.747-754 |
issn | 0020-7462 1878-5638 |
language | eng |
recordid | cdi_proquest_miscellaneous_29751357 |
source | Elsevier ScienceDirect Journals |
subjects | Optimal shape Pontryagin's principle Rotating rod |
title | The strongest rotating rod |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A23%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20strongest%20rotating%20rod&rft.jtitle=International%20journal%20of%20non-linear%20mechanics&rft.au=Atanackovic,%20T.M.&rft.date=2005-06-01&rft.volume=40&rft.issue=5&rft.spage=747&rft.epage=754&rft.pages=747-754&rft.issn=0020-7462&rft.eissn=1878-5638&rft_id=info:doi/10.1016/j.ijnonlinmec.2004.09.002&rft_dat=%3Cproquest_cross%3E29751357%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29751357&rft_id=info:pmid/&rft_els_id=S002074620400157X&rfr_iscdi=true |