Vortex blob methods applied to interfacial motion
We develop a boundary integral method for computing the motion of an interface separating two incompressible, inviscid fluids. The velocity integral is regularized, so that the vortex sheet on the interface is replaced by a sum of “blobs” of vorticity. The regularization allows control of physical i...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2004-05, Vol.196 (1), p.233-258 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 258 |
---|---|
container_issue | 1 |
container_start_page | 233 |
container_title | Journal of computational physics |
container_volume | 196 |
creator | Baker, Gregory R. Beale, J.Thomas |
description | We develop a boundary integral method for computing the motion of an interface separating two incompressible, inviscid fluids. The velocity integral is regularized, so that the vortex sheet on the interface is replaced by a sum of “blobs” of vorticity. The regularization allows control of physical instabilities. We design a class of high order blob methods and analyze the errors. Numerical tests suggest that the blob size should be scaled with the local spacing of the interfacial markers. For a vortex sheet in one fluid, with a first-order kernel, we obtain a spiral roll-up similar to Krasny [J. Comput. Phys. 65 (1986) 292], but the higher order kernels lead to more detailed structure. We verify the accuracy of the new method by computing a liquid–gas interface with Rayleigh–Taylor instability. We then apply the method to the more difficult case of Rayleigh–Taylor flow separating two fluids of positive density, a case for which the regularization appears to be essential, as found by Kerr and Tryggvason [both J. Comput. Phys. 76 (1988) 48; 75 (1988) 253]. We use a “blob” regularization in certain local terms in the evolution equations as well as in the velocity integral. We find strong evidence that improved spatial resolution with fixed blob size leads to a converged, regularized solution without numerical instabilities. However, it is not clear that there is a weak limit as the regularization is decreased. |
doi_str_mv | 10.1016/j.jcp.2003.10.023 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29744968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999103005953</els_id><sourcerecordid>29744968</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-61e7d656b92e2d94573b69c5897b486347de59aa4f9b137e6b170bd6dd3818993</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AG-96K01SdOkwZMsfsGCF_Ua8jHFlG5Tk6zov7fLLnhzLsMMz_sO8yJ0SXBFMOE3fdXbqaIY1_NcYVofoQXBEpdUEH6MFhhTUkopySk6S6nHGLcNaxeIvIeY4bswQzDFBvJHcKnQ0zR4cEUOhR8zxE5br4diE7IP4zk66fSQ4OLQl-jt4f519VSuXx6fV3fr0jJKc8kJCMcbbiQF6iRrRG24tE0rhWEtr5lw0EitWScNqQVwQwQ2jjtXt6SVsl6i673vFMPnFlJWG58sDIMeIWyTolIwJnk7g2QP2hhSitCpKfqNjj-KYLULR_VqDkftwtmt5nBmzdXBXCerhy7q0fr0J2x4I-aauds9B_OnXx6iStbDaMH5CDYrF_w_V34BMsd4Nw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29744968</pqid></control><display><type>article</type><title>Vortex blob methods applied to interfacial motion</title><source>Elsevier ScienceDirect Journals</source><creator>Baker, Gregory R. ; Beale, J.Thomas</creator><creatorcontrib>Baker, Gregory R. ; Beale, J.Thomas</creatorcontrib><description>We develop a boundary integral method for computing the motion of an interface separating two incompressible, inviscid fluids. The velocity integral is regularized, so that the vortex sheet on the interface is replaced by a sum of “blobs” of vorticity. The regularization allows control of physical instabilities. We design a class of high order blob methods and analyze the errors. Numerical tests suggest that the blob size should be scaled with the local spacing of the interfacial markers. For a vortex sheet in one fluid, with a first-order kernel, we obtain a spiral roll-up similar to Krasny [J. Comput. Phys. 65 (1986) 292], but the higher order kernels lead to more detailed structure. We verify the accuracy of the new method by computing a liquid–gas interface with Rayleigh–Taylor instability. We then apply the method to the more difficult case of Rayleigh–Taylor flow separating two fluids of positive density, a case for which the regularization appears to be essential, as found by Kerr and Tryggvason [both J. Comput. Phys. 76 (1988) 48; 75 (1988) 253]. We use a “blob” regularization in certain local terms in the evolution equations as well as in the velocity integral. We find strong evidence that improved spatial resolution with fixed blob size leads to a converged, regularized solution without numerical instabilities. However, it is not clear that there is a weak limit as the regularization is decreased.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2003.10.023</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Boundary integral method ; Computational techniques ; Exact sciences and technology ; Fluid interfaces ; Mathematical methods in physics ; Physics ; Rayleigh–Taylor instability ; Vortex blob ; Vortex sheet</subject><ispartof>Journal of computational physics, 2004-05, Vol.196 (1), p.233-258</ispartof><rights>2003 Elsevier Inc.</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-61e7d656b92e2d94573b69c5897b486347de59aa4f9b137e6b170bd6dd3818993</citedby><cites>FETCH-LOGICAL-c422t-61e7d656b92e2d94573b69c5897b486347de59aa4f9b137e6b170bd6dd3818993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021999103005953$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15657777$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Baker, Gregory R.</creatorcontrib><creatorcontrib>Beale, J.Thomas</creatorcontrib><title>Vortex blob methods applied to interfacial motion</title><title>Journal of computational physics</title><description>We develop a boundary integral method for computing the motion of an interface separating two incompressible, inviscid fluids. The velocity integral is regularized, so that the vortex sheet on the interface is replaced by a sum of “blobs” of vorticity. The regularization allows control of physical instabilities. We design a class of high order blob methods and analyze the errors. Numerical tests suggest that the blob size should be scaled with the local spacing of the interfacial markers. For a vortex sheet in one fluid, with a first-order kernel, we obtain a spiral roll-up similar to Krasny [J. Comput. Phys. 65 (1986) 292], but the higher order kernels lead to more detailed structure. We verify the accuracy of the new method by computing a liquid–gas interface with Rayleigh–Taylor instability. We then apply the method to the more difficult case of Rayleigh–Taylor flow separating two fluids of positive density, a case for which the regularization appears to be essential, as found by Kerr and Tryggvason [both J. Comput. Phys. 76 (1988) 48; 75 (1988) 253]. We use a “blob” regularization in certain local terms in the evolution equations as well as in the velocity integral. We find strong evidence that improved spatial resolution with fixed blob size leads to a converged, regularized solution without numerical instabilities. However, it is not clear that there is a weak limit as the regularization is decreased.</description><subject>Boundary integral method</subject><subject>Computational techniques</subject><subject>Exact sciences and technology</subject><subject>Fluid interfaces</subject><subject>Mathematical methods in physics</subject><subject>Physics</subject><subject>Rayleigh–Taylor instability</subject><subject>Vortex blob</subject><subject>Vortex sheet</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AG-96K01SdOkwZMsfsGCF_Ua8jHFlG5Tk6zov7fLLnhzLsMMz_sO8yJ0SXBFMOE3fdXbqaIY1_NcYVofoQXBEpdUEH6MFhhTUkopySk6S6nHGLcNaxeIvIeY4bswQzDFBvJHcKnQ0zR4cEUOhR8zxE5br4diE7IP4zk66fSQ4OLQl-jt4f519VSuXx6fV3fr0jJKc8kJCMcbbiQF6iRrRG24tE0rhWEtr5lw0EitWScNqQVwQwQ2jjtXt6SVsl6i673vFMPnFlJWG58sDIMeIWyTolIwJnk7g2QP2hhSitCpKfqNjj-KYLULR_VqDkftwtmt5nBmzdXBXCerhy7q0fr0J2x4I-aauds9B_OnXx6iStbDaMH5CDYrF_w_V34BMsd4Nw</recordid><startdate>20040501</startdate><enddate>20040501</enddate><creator>Baker, Gregory R.</creator><creator>Beale, J.Thomas</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20040501</creationdate><title>Vortex blob methods applied to interfacial motion</title><author>Baker, Gregory R. ; Beale, J.Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-61e7d656b92e2d94573b69c5897b486347de59aa4f9b137e6b170bd6dd3818993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Boundary integral method</topic><topic>Computational techniques</topic><topic>Exact sciences and technology</topic><topic>Fluid interfaces</topic><topic>Mathematical methods in physics</topic><topic>Physics</topic><topic>Rayleigh–Taylor instability</topic><topic>Vortex blob</topic><topic>Vortex sheet</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baker, Gregory R.</creatorcontrib><creatorcontrib>Beale, J.Thomas</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baker, Gregory R.</au><au>Beale, J.Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vortex blob methods applied to interfacial motion</atitle><jtitle>Journal of computational physics</jtitle><date>2004-05-01</date><risdate>2004</risdate><volume>196</volume><issue>1</issue><spage>233</spage><epage>258</epage><pages>233-258</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>We develop a boundary integral method for computing the motion of an interface separating two incompressible, inviscid fluids. The velocity integral is regularized, so that the vortex sheet on the interface is replaced by a sum of “blobs” of vorticity. The regularization allows control of physical instabilities. We design a class of high order blob methods and analyze the errors. Numerical tests suggest that the blob size should be scaled with the local spacing of the interfacial markers. For a vortex sheet in one fluid, with a first-order kernel, we obtain a spiral roll-up similar to Krasny [J. Comput. Phys. 65 (1986) 292], but the higher order kernels lead to more detailed structure. We verify the accuracy of the new method by computing a liquid–gas interface with Rayleigh–Taylor instability. We then apply the method to the more difficult case of Rayleigh–Taylor flow separating two fluids of positive density, a case for which the regularization appears to be essential, as found by Kerr and Tryggvason [both J. Comput. Phys. 76 (1988) 48; 75 (1988) 253]. We use a “blob” regularization in certain local terms in the evolution equations as well as in the velocity integral. We find strong evidence that improved spatial resolution with fixed blob size leads to a converged, regularized solution without numerical instabilities. However, it is not clear that there is a weak limit as the regularization is decreased.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2003.10.023</doi><tpages>26</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2004-05, Vol.196 (1), p.233-258 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_proquest_miscellaneous_29744968 |
source | Elsevier ScienceDirect Journals |
subjects | Boundary integral method Computational techniques Exact sciences and technology Fluid interfaces Mathematical methods in physics Physics Rayleigh–Taylor instability Vortex blob Vortex sheet |
title | Vortex blob methods applied to interfacial motion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T21%3A58%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vortex%20blob%20methods%20applied%20to%20interfacial%20motion&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Baker,%20Gregory%20R.&rft.date=2004-05-01&rft.volume=196&rft.issue=1&rft.spage=233&rft.epage=258&rft.pages=233-258&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2003.10.023&rft_dat=%3Cproquest_cross%3E29744968%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29744968&rft_id=info:pmid/&rft_els_id=S0021999103005953&rfr_iscdi=true |