Vortex blob methods applied to interfacial motion

We develop a boundary integral method for computing the motion of an interface separating two incompressible, inviscid fluids. The velocity integral is regularized, so that the vortex sheet on the interface is replaced by a sum of “blobs” of vorticity. The regularization allows control of physical i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2004-05, Vol.196 (1), p.233-258
Hauptverfasser: Baker, Gregory R., Beale, J.Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 258
container_issue 1
container_start_page 233
container_title Journal of computational physics
container_volume 196
creator Baker, Gregory R.
Beale, J.Thomas
description We develop a boundary integral method for computing the motion of an interface separating two incompressible, inviscid fluids. The velocity integral is regularized, so that the vortex sheet on the interface is replaced by a sum of “blobs” of vorticity. The regularization allows control of physical instabilities. We design a class of high order blob methods and analyze the errors. Numerical tests suggest that the blob size should be scaled with the local spacing of the interfacial markers. For a vortex sheet in one fluid, with a first-order kernel, we obtain a spiral roll-up similar to Krasny [J. Comput. Phys. 65 (1986) 292], but the higher order kernels lead to more detailed structure. We verify the accuracy of the new method by computing a liquid–gas interface with Rayleigh–Taylor instability. We then apply the method to the more difficult case of Rayleigh–Taylor flow separating two fluids of positive density, a case for which the regularization appears to be essential, as found by Kerr and Tryggvason [both J. Comput. Phys. 76 (1988) 48; 75 (1988) 253]. We use a “blob” regularization in certain local terms in the evolution equations as well as in the velocity integral. We find strong evidence that improved spatial resolution with fixed blob size leads to a converged, regularized solution without numerical instabilities. However, it is not clear that there is a weak limit as the regularization is decreased.
doi_str_mv 10.1016/j.jcp.2003.10.023
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29744968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999103005953</els_id><sourcerecordid>29744968</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-61e7d656b92e2d94573b69c5897b486347de59aa4f9b137e6b170bd6dd3818993</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AG-96K01SdOkwZMsfsGCF_Ua8jHFlG5Tk6zov7fLLnhzLsMMz_sO8yJ0SXBFMOE3fdXbqaIY1_NcYVofoQXBEpdUEH6MFhhTUkopySk6S6nHGLcNaxeIvIeY4bswQzDFBvJHcKnQ0zR4cEUOhR8zxE5br4diE7IP4zk66fSQ4OLQl-jt4f519VSuXx6fV3fr0jJKc8kJCMcbbiQF6iRrRG24tE0rhWEtr5lw0EitWScNqQVwQwQ2jjtXt6SVsl6i673vFMPnFlJWG58sDIMeIWyTolIwJnk7g2QP2hhSitCpKfqNjj-KYLULR_VqDkftwtmt5nBmzdXBXCerhy7q0fr0J2x4I-aauds9B_OnXx6iStbDaMH5CDYrF_w_V34BMsd4Nw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29744968</pqid></control><display><type>article</type><title>Vortex blob methods applied to interfacial motion</title><source>Elsevier ScienceDirect Journals</source><creator>Baker, Gregory R. ; Beale, J.Thomas</creator><creatorcontrib>Baker, Gregory R. ; Beale, J.Thomas</creatorcontrib><description>We develop a boundary integral method for computing the motion of an interface separating two incompressible, inviscid fluids. The velocity integral is regularized, so that the vortex sheet on the interface is replaced by a sum of “blobs” of vorticity. The regularization allows control of physical instabilities. We design a class of high order blob methods and analyze the errors. Numerical tests suggest that the blob size should be scaled with the local spacing of the interfacial markers. For a vortex sheet in one fluid, with a first-order kernel, we obtain a spiral roll-up similar to Krasny [J. Comput. Phys. 65 (1986) 292], but the higher order kernels lead to more detailed structure. We verify the accuracy of the new method by computing a liquid–gas interface with Rayleigh–Taylor instability. We then apply the method to the more difficult case of Rayleigh–Taylor flow separating two fluids of positive density, a case for which the regularization appears to be essential, as found by Kerr and Tryggvason [both J. Comput. Phys. 76 (1988) 48; 75 (1988) 253]. We use a “blob” regularization in certain local terms in the evolution equations as well as in the velocity integral. We find strong evidence that improved spatial resolution with fixed blob size leads to a converged, regularized solution without numerical instabilities. However, it is not clear that there is a weak limit as the regularization is decreased.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2003.10.023</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Boundary integral method ; Computational techniques ; Exact sciences and technology ; Fluid interfaces ; Mathematical methods in physics ; Physics ; Rayleigh–Taylor instability ; Vortex blob ; Vortex sheet</subject><ispartof>Journal of computational physics, 2004-05, Vol.196 (1), p.233-258</ispartof><rights>2003 Elsevier Inc.</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-61e7d656b92e2d94573b69c5897b486347de59aa4f9b137e6b170bd6dd3818993</citedby><cites>FETCH-LOGICAL-c422t-61e7d656b92e2d94573b69c5897b486347de59aa4f9b137e6b170bd6dd3818993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021999103005953$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15657777$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Baker, Gregory R.</creatorcontrib><creatorcontrib>Beale, J.Thomas</creatorcontrib><title>Vortex blob methods applied to interfacial motion</title><title>Journal of computational physics</title><description>We develop a boundary integral method for computing the motion of an interface separating two incompressible, inviscid fluids. The velocity integral is regularized, so that the vortex sheet on the interface is replaced by a sum of “blobs” of vorticity. The regularization allows control of physical instabilities. We design a class of high order blob methods and analyze the errors. Numerical tests suggest that the blob size should be scaled with the local spacing of the interfacial markers. For a vortex sheet in one fluid, with a first-order kernel, we obtain a spiral roll-up similar to Krasny [J. Comput. Phys. 65 (1986) 292], but the higher order kernels lead to more detailed structure. We verify the accuracy of the new method by computing a liquid–gas interface with Rayleigh–Taylor instability. We then apply the method to the more difficult case of Rayleigh–Taylor flow separating two fluids of positive density, a case for which the regularization appears to be essential, as found by Kerr and Tryggvason [both J. Comput. Phys. 76 (1988) 48; 75 (1988) 253]. We use a “blob” regularization in certain local terms in the evolution equations as well as in the velocity integral. We find strong evidence that improved spatial resolution with fixed blob size leads to a converged, regularized solution without numerical instabilities. However, it is not clear that there is a weak limit as the regularization is decreased.</description><subject>Boundary integral method</subject><subject>Computational techniques</subject><subject>Exact sciences and technology</subject><subject>Fluid interfaces</subject><subject>Mathematical methods in physics</subject><subject>Physics</subject><subject>Rayleigh–Taylor instability</subject><subject>Vortex blob</subject><subject>Vortex sheet</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AG-96K01SdOkwZMsfsGCF_Ua8jHFlG5Tk6zov7fLLnhzLsMMz_sO8yJ0SXBFMOE3fdXbqaIY1_NcYVofoQXBEpdUEH6MFhhTUkopySk6S6nHGLcNaxeIvIeY4bswQzDFBvJHcKnQ0zR4cEUOhR8zxE5br4diE7IP4zk66fSQ4OLQl-jt4f519VSuXx6fV3fr0jJKc8kJCMcbbiQF6iRrRG24tE0rhWEtr5lw0EitWScNqQVwQwQ2jjtXt6SVsl6i673vFMPnFlJWG58sDIMeIWyTolIwJnk7g2QP2hhSitCpKfqNjj-KYLULR_VqDkftwtmt5nBmzdXBXCerhy7q0fr0J2x4I-aauds9B_OnXx6iStbDaMH5CDYrF_w_V34BMsd4Nw</recordid><startdate>20040501</startdate><enddate>20040501</enddate><creator>Baker, Gregory R.</creator><creator>Beale, J.Thomas</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20040501</creationdate><title>Vortex blob methods applied to interfacial motion</title><author>Baker, Gregory R. ; Beale, J.Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-61e7d656b92e2d94573b69c5897b486347de59aa4f9b137e6b170bd6dd3818993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Boundary integral method</topic><topic>Computational techniques</topic><topic>Exact sciences and technology</topic><topic>Fluid interfaces</topic><topic>Mathematical methods in physics</topic><topic>Physics</topic><topic>Rayleigh–Taylor instability</topic><topic>Vortex blob</topic><topic>Vortex sheet</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baker, Gregory R.</creatorcontrib><creatorcontrib>Beale, J.Thomas</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baker, Gregory R.</au><au>Beale, J.Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vortex blob methods applied to interfacial motion</atitle><jtitle>Journal of computational physics</jtitle><date>2004-05-01</date><risdate>2004</risdate><volume>196</volume><issue>1</issue><spage>233</spage><epage>258</epage><pages>233-258</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>We develop a boundary integral method for computing the motion of an interface separating two incompressible, inviscid fluids. The velocity integral is regularized, so that the vortex sheet on the interface is replaced by a sum of “blobs” of vorticity. The regularization allows control of physical instabilities. We design a class of high order blob methods and analyze the errors. Numerical tests suggest that the blob size should be scaled with the local spacing of the interfacial markers. For a vortex sheet in one fluid, with a first-order kernel, we obtain a spiral roll-up similar to Krasny [J. Comput. Phys. 65 (1986) 292], but the higher order kernels lead to more detailed structure. We verify the accuracy of the new method by computing a liquid–gas interface with Rayleigh–Taylor instability. We then apply the method to the more difficult case of Rayleigh–Taylor flow separating two fluids of positive density, a case for which the regularization appears to be essential, as found by Kerr and Tryggvason [both J. Comput. Phys. 76 (1988) 48; 75 (1988) 253]. We use a “blob” regularization in certain local terms in the evolution equations as well as in the velocity integral. We find strong evidence that improved spatial resolution with fixed blob size leads to a converged, regularized solution without numerical instabilities. However, it is not clear that there is a weak limit as the regularization is decreased.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2003.10.023</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2004-05, Vol.196 (1), p.233-258
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_miscellaneous_29744968
source Elsevier ScienceDirect Journals
subjects Boundary integral method
Computational techniques
Exact sciences and technology
Fluid interfaces
Mathematical methods in physics
Physics
Rayleigh–Taylor instability
Vortex blob
Vortex sheet
title Vortex blob methods applied to interfacial motion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T21%3A58%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vortex%20blob%20methods%20applied%20to%20interfacial%20motion&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Baker,%20Gregory%20R.&rft.date=2004-05-01&rft.volume=196&rft.issue=1&rft.spage=233&rft.epage=258&rft.pages=233-258&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2003.10.023&rft_dat=%3Cproquest_cross%3E29744968%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29744968&rft_id=info:pmid/&rft_els_id=S0021999103005953&rfr_iscdi=true