Microstructure evolution in adiabatic shear band in α-titanium
The microstructure and microtexture of adiabatic shear bands (ASBs) on the titanium side of a titanium/mild steel explosive cladding interface are investigated by means of optical microscopy (OM), scanning electron microscopy/electron back-scattered diffraction (SEM/EBSD) and transmission electron m...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2006-11, Vol.41 (22), p.7387-7392 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7392 |
---|---|
container_issue | 22 |
container_start_page | 7387 |
container_title | Journal of materials science |
container_volume | 41 |
creator | YANG, Y WANG, B. F |
description | The microstructure and microtexture of adiabatic shear bands (ASBs) on the titanium side of a titanium/mild steel explosive cladding interface are investigated by means of optical microscopy (OM), scanning electron microscopy/electron back-scattered diffraction (SEM/EBSD) and transmission electron microscopy (TEM). Highly elongated subgrains and fine equiaxed grains with low dislocation density are observed in the ASBs. Recrystallization microtextures (28°, 54°, 0°), (60°, 90°, 0°) and (28°, 34°, 30°) are formed within ASBs. The grain boundaries within ASBs are geometrical necessary boundaries (GNBs) with high-angles. Based on the relations between temperature and the engineering shear strain, the temperature in the ASBs is estimated to be about 776–1142 K (0.4–0.6 Tm). The rotation dynamic recrystallization (RDR) mechanism is employed to describe the kinetics of the nano-grains’ formation and the recrystallized process within ASBs. The small grains within ASBs are formed during the deformation and do not undergo significant growth by grain boundary migration after deformation. |
doi_str_mv | 10.1007/s10853-006-0811-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29741668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259706121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-8706360654a0135b6bd2ccc54fc75e78fc7e6427c3c9ac27fa5ab471a75775123</originalsourceid><addsrcrecordid>eNpdkM1KAzEUhYMoWKsP4G5AdBe9-Z-uRMQ_qLjRdbiTZjBlOlOTjOBj-SI-kyktCK4OXL5zOPcQcsrgkgGYq8SgVoICaAo1Y1TskQlTRlBZg9gnEwDOKZeaHZKjlJYAoAxnE3L9HFwcUo6jy2P0lf8cujGHoa9CX-EiYIM5uCq9e4xVg_1ic__5pjlk7MO4OiYHLXbJn-x0St7u715vH-n85eHp9mZOnRAy09qAFhq0kghMqEY3C-6cU7J1RnlTF_FacuOEm6HjpkWFjTQMjTJGMS6m5GKbu47Dx-hTtquQnO867P0wJstnRjKt6wKe_QOXwxj70s1yrmalB-OsUGxLbZ5P0bd2HcMK45dlYDeD2u2gtgxqN4NaUTznu2RMDrs2Yu9C-jPWoi5NtfgFksN0zw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259706121</pqid></control><display><type>article</type><title>Microstructure evolution in adiabatic shear band in α-titanium</title><source>SpringerLink Journals - AutoHoldings</source><creator>YANG, Y ; WANG, B. F</creator><creatorcontrib>YANG, Y ; WANG, B. F</creatorcontrib><description>The microstructure and microtexture of adiabatic shear bands (ASBs) on the titanium side of a titanium/mild steel explosive cladding interface are investigated by means of optical microscopy (OM), scanning electron microscopy/electron back-scattered diffraction (SEM/EBSD) and transmission electron microscopy (TEM). Highly elongated subgrains and fine equiaxed grains with low dislocation density are observed in the ASBs. Recrystallization microtextures (28°, 54°, 0°), (60°, 90°, 0°) and (28°, 34°, 30°) are formed within ASBs. The grain boundaries within ASBs are geometrical necessary boundaries (GNBs) with high-angles. Based on the relations between temperature and the engineering shear strain, the temperature in the ASBs is estimated to be about 776–1142 K (0.4–0.6 Tm). The rotation dynamic recrystallization (RDR) mechanism is employed to describe the kinetics of the nano-grains’ formation and the recrystallized process within ASBs. The small grains within ASBs are formed during the deformation and do not undergo significant growth by grain boundary migration after deformation.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-006-0811-3</identifier><identifier>CODEN: JMTSAS</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Adiabatic flow ; Angles (geometry) ; Boundaries ; Cross-disciplinary physics: materials science; rheology ; Deformation mechanisms ; Dislocation density ; Dynamic recrystallization ; Edge dislocations ; Exact sciences and technology ; Explosive cladding ; Grain boundary migration ; Grains ; Low carbon steels ; Materials science ; Microscopy ; Microstructure ; Microtexture ; Optical microscopy ; Other topics in materials science ; Physics ; Scanning electron microscopy ; Shear bands ; Shear strain ; Titanium ; Transmission electron microscopy</subject><ispartof>Journal of materials science, 2006-11, Vol.41 (22), p.7387-7392</ispartof><rights>2007 INIST-CNRS</rights><rights>Journal of Materials Science is a copyright of Springer, (2006). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-8706360654a0135b6bd2ccc54fc75e78fc7e6427c3c9ac27fa5ab471a75775123</citedby><cites>FETCH-LOGICAL-c334t-8706360654a0135b6bd2ccc54fc75e78fc7e6427c3c9ac27fa5ab471a75775123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18385126$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>YANG, Y</creatorcontrib><creatorcontrib>WANG, B. F</creatorcontrib><title>Microstructure evolution in adiabatic shear band in α-titanium</title><title>Journal of materials science</title><description>The microstructure and microtexture of adiabatic shear bands (ASBs) on the titanium side of a titanium/mild steel explosive cladding interface are investigated by means of optical microscopy (OM), scanning electron microscopy/electron back-scattered diffraction (SEM/EBSD) and transmission electron microscopy (TEM). Highly elongated subgrains and fine equiaxed grains with low dislocation density are observed in the ASBs. Recrystallization microtextures (28°, 54°, 0°), (60°, 90°, 0°) and (28°, 34°, 30°) are formed within ASBs. The grain boundaries within ASBs are geometrical necessary boundaries (GNBs) with high-angles. Based on the relations between temperature and the engineering shear strain, the temperature in the ASBs is estimated to be about 776–1142 K (0.4–0.6 Tm). The rotation dynamic recrystallization (RDR) mechanism is employed to describe the kinetics of the nano-grains’ formation and the recrystallized process within ASBs. The small grains within ASBs are formed during the deformation and do not undergo significant growth by grain boundary migration after deformation.</description><subject>Adiabatic flow</subject><subject>Angles (geometry)</subject><subject>Boundaries</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Deformation mechanisms</subject><subject>Dislocation density</subject><subject>Dynamic recrystallization</subject><subject>Edge dislocations</subject><subject>Exact sciences and technology</subject><subject>Explosive cladding</subject><subject>Grain boundary migration</subject><subject>Grains</subject><subject>Low carbon steels</subject><subject>Materials science</subject><subject>Microscopy</subject><subject>Microstructure</subject><subject>Microtexture</subject><subject>Optical microscopy</subject><subject>Other topics in materials science</subject><subject>Physics</subject><subject>Scanning electron microscopy</subject><subject>Shear bands</subject><subject>Shear strain</subject><subject>Titanium</subject><subject>Transmission electron microscopy</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkM1KAzEUhYMoWKsP4G5AdBe9-Z-uRMQ_qLjRdbiTZjBlOlOTjOBj-SI-kyktCK4OXL5zOPcQcsrgkgGYq8SgVoICaAo1Y1TskQlTRlBZg9gnEwDOKZeaHZKjlJYAoAxnE3L9HFwcUo6jy2P0lf8cujGHoa9CX-EiYIM5uCq9e4xVg_1ic__5pjlk7MO4OiYHLXbJn-x0St7u715vH-n85eHp9mZOnRAy09qAFhq0kghMqEY3C-6cU7J1RnlTF_FacuOEm6HjpkWFjTQMjTJGMS6m5GKbu47Dx-hTtquQnO867P0wJstnRjKt6wKe_QOXwxj70s1yrmalB-OsUGxLbZ5P0bd2HcMK45dlYDeD2u2gtgxqN4NaUTznu2RMDrs2Yu9C-jPWoi5NtfgFksN0zw</recordid><startdate>20061101</startdate><enddate>20061101</enddate><creator>YANG, Y</creator><creator>WANG, B. F</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20061101</creationdate><title>Microstructure evolution in adiabatic shear band in α-titanium</title><author>YANG, Y ; WANG, B. F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-8706360654a0135b6bd2ccc54fc75e78fc7e6427c3c9ac27fa5ab471a75775123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Adiabatic flow</topic><topic>Angles (geometry)</topic><topic>Boundaries</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Deformation mechanisms</topic><topic>Dislocation density</topic><topic>Dynamic recrystallization</topic><topic>Edge dislocations</topic><topic>Exact sciences and technology</topic><topic>Explosive cladding</topic><topic>Grain boundary migration</topic><topic>Grains</topic><topic>Low carbon steels</topic><topic>Materials science</topic><topic>Microscopy</topic><topic>Microstructure</topic><topic>Microtexture</topic><topic>Optical microscopy</topic><topic>Other topics in materials science</topic><topic>Physics</topic><topic>Scanning electron microscopy</topic><topic>Shear bands</topic><topic>Shear strain</topic><topic>Titanium</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>YANG, Y</creatorcontrib><creatorcontrib>WANG, B. F</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>YANG, Y</au><au>WANG, B. F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure evolution in adiabatic shear band in α-titanium</atitle><jtitle>Journal of materials science</jtitle><date>2006-11-01</date><risdate>2006</risdate><volume>41</volume><issue>22</issue><spage>7387</spage><epage>7392</epage><pages>7387-7392</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><coden>JMTSAS</coden><abstract>The microstructure and microtexture of adiabatic shear bands (ASBs) on the titanium side of a titanium/mild steel explosive cladding interface are investigated by means of optical microscopy (OM), scanning electron microscopy/electron back-scattered diffraction (SEM/EBSD) and transmission electron microscopy (TEM). Highly elongated subgrains and fine equiaxed grains with low dislocation density are observed in the ASBs. Recrystallization microtextures (28°, 54°, 0°), (60°, 90°, 0°) and (28°, 34°, 30°) are formed within ASBs. The grain boundaries within ASBs are geometrical necessary boundaries (GNBs) with high-angles. Based on the relations between temperature and the engineering shear strain, the temperature in the ASBs is estimated to be about 776–1142 K (0.4–0.6 Tm). The rotation dynamic recrystallization (RDR) mechanism is employed to describe the kinetics of the nano-grains’ formation and the recrystallized process within ASBs. The small grains within ASBs are formed during the deformation and do not undergo significant growth by grain boundary migration after deformation.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1007/s10853-006-0811-3</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2006-11, Vol.41 (22), p.7387-7392 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_miscellaneous_29741668 |
source | SpringerLink Journals - AutoHoldings |
subjects | Adiabatic flow Angles (geometry) Boundaries Cross-disciplinary physics: materials science rheology Deformation mechanisms Dislocation density Dynamic recrystallization Edge dislocations Exact sciences and technology Explosive cladding Grain boundary migration Grains Low carbon steels Materials science Microscopy Microstructure Microtexture Optical microscopy Other topics in materials science Physics Scanning electron microscopy Shear bands Shear strain Titanium Transmission electron microscopy |
title | Microstructure evolution in adiabatic shear band in α-titanium |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T23%3A58%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure%20evolution%20in%20adiabatic%20shear%20band%20in%20%CE%B1-titanium&rft.jtitle=Journal%20of%20materials%20science&rft.au=YANG,%20Y&rft.date=2006-11-01&rft.volume=41&rft.issue=22&rft.spage=7387&rft.epage=7392&rft.pages=7387-7392&rft.issn=0022-2461&rft.eissn=1573-4803&rft.coden=JMTSAS&rft_id=info:doi/10.1007/s10853-006-0811-3&rft_dat=%3Cproquest_cross%3E2259706121%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259706121&rft_id=info:pmid/&rfr_iscdi=true |