Microstructure evolution in adiabatic shear band in α-titanium

The microstructure and microtexture of adiabatic shear bands (ASBs) on the titanium side of a titanium/mild steel explosive cladding interface are investigated by means of optical microscopy (OM), scanning electron microscopy/electron back-scattered diffraction (SEM/EBSD) and transmission electron m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2006-11, Vol.41 (22), p.7387-7392
Hauptverfasser: YANG, Y, WANG, B. F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7392
container_issue 22
container_start_page 7387
container_title Journal of materials science
container_volume 41
creator YANG, Y
WANG, B. F
description The microstructure and microtexture of adiabatic shear bands (ASBs) on the titanium side of a titanium/mild steel explosive cladding interface are investigated by means of optical microscopy (OM), scanning electron microscopy/electron back-scattered diffraction (SEM/EBSD) and transmission electron microscopy (TEM). Highly elongated subgrains and fine equiaxed grains with low dislocation density are observed in the ASBs. Recrystallization microtextures (28°, 54°, 0°), (60°, 90°, 0°) and (28°, 34°, 30°) are formed within ASBs. The grain boundaries within ASBs are geometrical necessary boundaries (GNBs) with high-angles. Based on the relations between temperature and the engineering shear strain, the temperature in the ASBs is estimated to be about 776–1142 K (0.4–0.6 Tm). The rotation dynamic recrystallization (RDR) mechanism is employed to describe the kinetics of the nano-grains’ formation and the recrystallized process within ASBs. The small grains within ASBs are formed during the deformation and do not undergo significant growth by grain boundary migration after deformation.
doi_str_mv 10.1007/s10853-006-0811-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29741668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259706121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-8706360654a0135b6bd2ccc54fc75e78fc7e6427c3c9ac27fa5ab471a75775123</originalsourceid><addsrcrecordid>eNpdkM1KAzEUhYMoWKsP4G5AdBe9-Z-uRMQ_qLjRdbiTZjBlOlOTjOBj-SI-kyktCK4OXL5zOPcQcsrgkgGYq8SgVoICaAo1Y1TskQlTRlBZg9gnEwDOKZeaHZKjlJYAoAxnE3L9HFwcUo6jy2P0lf8cujGHoa9CX-EiYIM5uCq9e4xVg_1ic__5pjlk7MO4OiYHLXbJn-x0St7u715vH-n85eHp9mZOnRAy09qAFhq0kghMqEY3C-6cU7J1RnlTF_FacuOEm6HjpkWFjTQMjTJGMS6m5GKbu47Dx-hTtquQnO867P0wJstnRjKt6wKe_QOXwxj70s1yrmalB-OsUGxLbZ5P0bd2HcMK45dlYDeD2u2gtgxqN4NaUTznu2RMDrs2Yu9C-jPWoi5NtfgFksN0zw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259706121</pqid></control><display><type>article</type><title>Microstructure evolution in adiabatic shear band in α-titanium</title><source>SpringerLink Journals - AutoHoldings</source><creator>YANG, Y ; WANG, B. F</creator><creatorcontrib>YANG, Y ; WANG, B. F</creatorcontrib><description>The microstructure and microtexture of adiabatic shear bands (ASBs) on the titanium side of a titanium/mild steel explosive cladding interface are investigated by means of optical microscopy (OM), scanning electron microscopy/electron back-scattered diffraction (SEM/EBSD) and transmission electron microscopy (TEM). Highly elongated subgrains and fine equiaxed grains with low dislocation density are observed in the ASBs. Recrystallization microtextures (28°, 54°, 0°), (60°, 90°, 0°) and (28°, 34°, 30°) are formed within ASBs. The grain boundaries within ASBs are geometrical necessary boundaries (GNBs) with high-angles. Based on the relations between temperature and the engineering shear strain, the temperature in the ASBs is estimated to be about 776–1142 K (0.4–0.6 Tm). The rotation dynamic recrystallization (RDR) mechanism is employed to describe the kinetics of the nano-grains’ formation and the recrystallized process within ASBs. The small grains within ASBs are formed during the deformation and do not undergo significant growth by grain boundary migration after deformation.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-006-0811-3</identifier><identifier>CODEN: JMTSAS</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Adiabatic flow ; Angles (geometry) ; Boundaries ; Cross-disciplinary physics: materials science; rheology ; Deformation mechanisms ; Dislocation density ; Dynamic recrystallization ; Edge dislocations ; Exact sciences and technology ; Explosive cladding ; Grain boundary migration ; Grains ; Low carbon steels ; Materials science ; Microscopy ; Microstructure ; Microtexture ; Optical microscopy ; Other topics in materials science ; Physics ; Scanning electron microscopy ; Shear bands ; Shear strain ; Titanium ; Transmission electron microscopy</subject><ispartof>Journal of materials science, 2006-11, Vol.41 (22), p.7387-7392</ispartof><rights>2007 INIST-CNRS</rights><rights>Journal of Materials Science is a copyright of Springer, (2006). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-8706360654a0135b6bd2ccc54fc75e78fc7e6427c3c9ac27fa5ab471a75775123</citedby><cites>FETCH-LOGICAL-c334t-8706360654a0135b6bd2ccc54fc75e78fc7e6427c3c9ac27fa5ab471a75775123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18385126$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>YANG, Y</creatorcontrib><creatorcontrib>WANG, B. F</creatorcontrib><title>Microstructure evolution in adiabatic shear band in α-titanium</title><title>Journal of materials science</title><description>The microstructure and microtexture of adiabatic shear bands (ASBs) on the titanium side of a titanium/mild steel explosive cladding interface are investigated by means of optical microscopy (OM), scanning electron microscopy/electron back-scattered diffraction (SEM/EBSD) and transmission electron microscopy (TEM). Highly elongated subgrains and fine equiaxed grains with low dislocation density are observed in the ASBs. Recrystallization microtextures (28°, 54°, 0°), (60°, 90°, 0°) and (28°, 34°, 30°) are formed within ASBs. The grain boundaries within ASBs are geometrical necessary boundaries (GNBs) with high-angles. Based on the relations between temperature and the engineering shear strain, the temperature in the ASBs is estimated to be about 776–1142 K (0.4–0.6 Tm). The rotation dynamic recrystallization (RDR) mechanism is employed to describe the kinetics of the nano-grains’ formation and the recrystallized process within ASBs. The small grains within ASBs are formed during the deformation and do not undergo significant growth by grain boundary migration after deformation.</description><subject>Adiabatic flow</subject><subject>Angles (geometry)</subject><subject>Boundaries</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Deformation mechanisms</subject><subject>Dislocation density</subject><subject>Dynamic recrystallization</subject><subject>Edge dislocations</subject><subject>Exact sciences and technology</subject><subject>Explosive cladding</subject><subject>Grain boundary migration</subject><subject>Grains</subject><subject>Low carbon steels</subject><subject>Materials science</subject><subject>Microscopy</subject><subject>Microstructure</subject><subject>Microtexture</subject><subject>Optical microscopy</subject><subject>Other topics in materials science</subject><subject>Physics</subject><subject>Scanning electron microscopy</subject><subject>Shear bands</subject><subject>Shear strain</subject><subject>Titanium</subject><subject>Transmission electron microscopy</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkM1KAzEUhYMoWKsP4G5AdBe9-Z-uRMQ_qLjRdbiTZjBlOlOTjOBj-SI-kyktCK4OXL5zOPcQcsrgkgGYq8SgVoICaAo1Y1TskQlTRlBZg9gnEwDOKZeaHZKjlJYAoAxnE3L9HFwcUo6jy2P0lf8cujGHoa9CX-EiYIM5uCq9e4xVg_1ic__5pjlk7MO4OiYHLXbJn-x0St7u715vH-n85eHp9mZOnRAy09qAFhq0kghMqEY3C-6cU7J1RnlTF_FacuOEm6HjpkWFjTQMjTJGMS6m5GKbu47Dx-hTtquQnO867P0wJstnRjKt6wKe_QOXwxj70s1yrmalB-OsUGxLbZ5P0bd2HcMK45dlYDeD2u2gtgxqN4NaUTznu2RMDrs2Yu9C-jPWoi5NtfgFksN0zw</recordid><startdate>20061101</startdate><enddate>20061101</enddate><creator>YANG, Y</creator><creator>WANG, B. F</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20061101</creationdate><title>Microstructure evolution in adiabatic shear band in α-titanium</title><author>YANG, Y ; WANG, B. F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-8706360654a0135b6bd2ccc54fc75e78fc7e6427c3c9ac27fa5ab471a75775123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Adiabatic flow</topic><topic>Angles (geometry)</topic><topic>Boundaries</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Deformation mechanisms</topic><topic>Dislocation density</topic><topic>Dynamic recrystallization</topic><topic>Edge dislocations</topic><topic>Exact sciences and technology</topic><topic>Explosive cladding</topic><topic>Grain boundary migration</topic><topic>Grains</topic><topic>Low carbon steels</topic><topic>Materials science</topic><topic>Microscopy</topic><topic>Microstructure</topic><topic>Microtexture</topic><topic>Optical microscopy</topic><topic>Other topics in materials science</topic><topic>Physics</topic><topic>Scanning electron microscopy</topic><topic>Shear bands</topic><topic>Shear strain</topic><topic>Titanium</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>YANG, Y</creatorcontrib><creatorcontrib>WANG, B. F</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>YANG, Y</au><au>WANG, B. F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure evolution in adiabatic shear band in α-titanium</atitle><jtitle>Journal of materials science</jtitle><date>2006-11-01</date><risdate>2006</risdate><volume>41</volume><issue>22</issue><spage>7387</spage><epage>7392</epage><pages>7387-7392</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><coden>JMTSAS</coden><abstract>The microstructure and microtexture of adiabatic shear bands (ASBs) on the titanium side of a titanium/mild steel explosive cladding interface are investigated by means of optical microscopy (OM), scanning electron microscopy/electron back-scattered diffraction (SEM/EBSD) and transmission electron microscopy (TEM). Highly elongated subgrains and fine equiaxed grains with low dislocation density are observed in the ASBs. Recrystallization microtextures (28°, 54°, 0°), (60°, 90°, 0°) and (28°, 34°, 30°) are formed within ASBs. The grain boundaries within ASBs are geometrical necessary boundaries (GNBs) with high-angles. Based on the relations between temperature and the engineering shear strain, the temperature in the ASBs is estimated to be about 776–1142 K (0.4–0.6 Tm). The rotation dynamic recrystallization (RDR) mechanism is employed to describe the kinetics of the nano-grains’ formation and the recrystallized process within ASBs. The small grains within ASBs are formed during the deformation and do not undergo significant growth by grain boundary migration after deformation.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1007/s10853-006-0811-3</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2006-11, Vol.41 (22), p.7387-7392
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_miscellaneous_29741668
source SpringerLink Journals - AutoHoldings
subjects Adiabatic flow
Angles (geometry)
Boundaries
Cross-disciplinary physics: materials science
rheology
Deformation mechanisms
Dislocation density
Dynamic recrystallization
Edge dislocations
Exact sciences and technology
Explosive cladding
Grain boundary migration
Grains
Low carbon steels
Materials science
Microscopy
Microstructure
Microtexture
Optical microscopy
Other topics in materials science
Physics
Scanning electron microscopy
Shear bands
Shear strain
Titanium
Transmission electron microscopy
title Microstructure evolution in adiabatic shear band in α-titanium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T23%3A58%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure%20evolution%20in%20adiabatic%20shear%20band%20in%20%CE%B1-titanium&rft.jtitle=Journal%20of%20materials%20science&rft.au=YANG,%20Y&rft.date=2006-11-01&rft.volume=41&rft.issue=22&rft.spage=7387&rft.epage=7392&rft.pages=7387-7392&rft.issn=0022-2461&rft.eissn=1573-4803&rft.coden=JMTSAS&rft_id=info:doi/10.1007/s10853-006-0811-3&rft_dat=%3Cproquest_cross%3E2259706121%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259706121&rft_id=info:pmid/&rfr_iscdi=true