A neoteric antibacterial ceria-silver nanozyme for abiotic surfaces

Community-associated and hospital-acquired infections caused by bacteria continue to yield major global challenges to human health. Bacterial contamination on abiotic surfaces is largely spread via high-touch surfaces and contemporary standard disinfection practices show limited efficacy, resulting...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2024-06, Vol.307, p.122527-122527, Article 122527
Hauptverfasser: Pugazhendhi, Abinaya Sindu, Neal, Craig J., Ta, Khoa Minh, Molinari, Marco, Kumar, Udit, Wei, Fei, Kolanthai, Elayaraja, Ady, Andrew, Drake, Christina, Hughes, Megan, Yooseph, Shibu, Seal, Sudipta, Coathup, Melanie J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 122527
container_issue
container_start_page 122527
container_title Biomaterials
container_volume 307
creator Pugazhendhi, Abinaya Sindu
Neal, Craig J.
Ta, Khoa Minh
Molinari, Marco
Kumar, Udit
Wei, Fei
Kolanthai, Elayaraja
Ady, Andrew
Drake, Christina
Hughes, Megan
Yooseph, Shibu
Seal, Sudipta
Coathup, Melanie J.
description Community-associated and hospital-acquired infections caused by bacteria continue to yield major global challenges to human health. Bacterial contamination on abiotic surfaces is largely spread via high-touch surfaces and contemporary standard disinfection practices show limited efficacy, resulting in unsatisfactory therapeutic outcomes. New strategies that offer non-specific and broad protection are urgently needed. Herein, we report our novel ceria-silver nanozyme engineered at a molar ratio of 5:1 and with a higher trivalent (Ce3+) surface fraction. Our results reveal potent levels of surface catalytic activity on both wet and dry surfaces, with rapid, and complete eradication of Pseudomonas aeruginosa, Staphylococcus aureus, and methicillin resistant S. aureus, in both planktonic and biofilm form. Preferential electrostatic adherence of anionic bacteria to the cationic nanozyme surface leads to a catastrophic loss in both aerobic and anaerobic respiration, DNA damage, osmodysregulation, and finally, programmed bacterial lysis. Our data reveal several unique mechanistic avenues of synergistic ceria-Ag efficacy. Ag potentially increases the presence of Ce3+ sites at the ceria-Ag interface, thereby facilitating the formation of harmful H2O2, followed by likely permeation across the cell wall. Further, a weakened Ag-induced Ce–O bond may drive electron transfer from the Ec band to O2, thereby further facilitating the selective reduction of O2 toward H2O2 formation. Ag destabilizes the surface adsorption of molecular H2O2, potentially leading to higher concentrations of free H2O2 adjacent to bacteria. To this end, our results show that H2O2 and/or NO/NO2−/NO3− are the key liberators of antibacterial activity, with a limited immediate role being offered by nanozyme-induced ROS including O2•- and OH•, and likely other light-activated radicals. A mini-pilot proof-of-concept study performed in a pediatric dental clinic setting confirms residual, and continual nanozyme antibacterial efficacy over a 28-day period. These findings open a new approach to alleviate infections caused by bacteria for use on high-touch hard surfaces. o Bacteria continue to yield major global challenges to human health.o A novel ceria-silver nanozyme engineered at a molar ratio of 5:1 and with a higher trivalent (Ce3+) surface fraction delivers superior catalytic activity.o The unique synergistic material formulation potently eradicates multispecies inoculations after repeated surface re
doi_str_mv 10.1016/j.biomaterials.2024.122527
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2974007850</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961224000619</els_id><sourcerecordid>2974007850</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-5242ad9f7338d5ae6c3f2435865842d3f8b232aa6ff2c5b430223bc86c2d1bd83</originalsourceid><addsrcrecordid>eNqNkF1LwzAUhoMobk7_ghSvvOlMTpI29W7MTxh4o9chTRPI6MdM2sH89aZ0ipdeHQLPed-cB6EbgpcEk-xuuyxd16jeeKfqsAQMbEkAOOQnaE5ELlJeYH6K5pgwSIuMwAxdhLDF8Y0ZnKMZFZwIXpA5Wq-S1nRjlE5U27tS6Sk30eNIg6v3xietaruvQ2MS2_lExfo-8mHwVmkTLtGZjR8xV8e5QB9Pj-_rl3Tz9vy6Xm1STQXuUw4MVFXYnFJRcWUyTS0wykXGBYOKWlECBaUya0HzklEMQEstMg0VKStBF-h2yt357nMwoZeNC9rUtYonDEFCkTOMc8FxRO8nVPsuBG-s3HnXKH-QBMtRotzKvxLlKFFOEuPy9bFnKBtT_a7-WIvAwwSYeO3eGS-DdqbVpnLe6F5WnftPzzeaAInB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2974007850</pqid></control><display><type>article</type><title>A neoteric antibacterial ceria-silver nanozyme for abiotic surfaces</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Pugazhendhi, Abinaya Sindu ; Neal, Craig J. ; Ta, Khoa Minh ; Molinari, Marco ; Kumar, Udit ; Wei, Fei ; Kolanthai, Elayaraja ; Ady, Andrew ; Drake, Christina ; Hughes, Megan ; Yooseph, Shibu ; Seal, Sudipta ; Coathup, Melanie J.</creator><creatorcontrib>Pugazhendhi, Abinaya Sindu ; Neal, Craig J. ; Ta, Khoa Minh ; Molinari, Marco ; Kumar, Udit ; Wei, Fei ; Kolanthai, Elayaraja ; Ady, Andrew ; Drake, Christina ; Hughes, Megan ; Yooseph, Shibu ; Seal, Sudipta ; Coathup, Melanie J.</creatorcontrib><description>Community-associated and hospital-acquired infections caused by bacteria continue to yield major global challenges to human health. Bacterial contamination on abiotic surfaces is largely spread via high-touch surfaces and contemporary standard disinfection practices show limited efficacy, resulting in unsatisfactory therapeutic outcomes. New strategies that offer non-specific and broad protection are urgently needed. Herein, we report our novel ceria-silver nanozyme engineered at a molar ratio of 5:1 and with a higher trivalent (Ce3+) surface fraction. Our results reveal potent levels of surface catalytic activity on both wet and dry surfaces, with rapid, and complete eradication of Pseudomonas aeruginosa, Staphylococcus aureus, and methicillin resistant S. aureus, in both planktonic and biofilm form. Preferential electrostatic adherence of anionic bacteria to the cationic nanozyme surface leads to a catastrophic loss in both aerobic and anaerobic respiration, DNA damage, osmodysregulation, and finally, programmed bacterial lysis. Our data reveal several unique mechanistic avenues of synergistic ceria-Ag efficacy. Ag potentially increases the presence of Ce3+ sites at the ceria-Ag interface, thereby facilitating the formation of harmful H2O2, followed by likely permeation across the cell wall. Further, a weakened Ag-induced Ce–O bond may drive electron transfer from the Ec band to O2, thereby further facilitating the selective reduction of O2 toward H2O2 formation. Ag destabilizes the surface adsorption of molecular H2O2, potentially leading to higher concentrations of free H2O2 adjacent to bacteria. To this end, our results show that H2O2 and/or NO/NO2−/NO3− are the key liberators of antibacterial activity, with a limited immediate role being offered by nanozyme-induced ROS including O2•- and OH•, and likely other light-activated radicals. A mini-pilot proof-of-concept study performed in a pediatric dental clinic setting confirms residual, and continual nanozyme antibacterial efficacy over a 28-day period. These findings open a new approach to alleviate infections caused by bacteria for use on high-touch hard surfaces. o Bacteria continue to yield major global challenges to human health.o A novel ceria-silver nanozyme engineered at a molar ratio of 5:1 and with a higher trivalent (Ce3+) surface fraction delivers superior catalytic activity.o The unique synergistic material formulation potently eradicates multispecies inoculations after repeated surface rechallenges.o The key liberator of antibacterial nanozyme activity is hydrogen peroxide and not reactive oxygen species formation. [Display omitted]</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2024.122527</identifier><identifier>PMID: 38518591</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Agent ; Antibacterial ; Biocidal ; Biofilm ; Ceria ; Disinfection ; Infection ; Silver</subject><ispartof>Biomaterials, 2024-06, Vol.307, p.122527-122527, Article 122527</ispartof><rights>2024 Elsevier Ltd</rights><rights>Copyright © 2024 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-5242ad9f7338d5ae6c3f2435865842d3f8b232aa6ff2c5b430223bc86c2d1bd83</citedby><cites>FETCH-LOGICAL-c380t-5242ad9f7338d5ae6c3f2435865842d3f8b232aa6ff2c5b430223bc86c2d1bd83</cites><orcidid>0000-0002-4543-4756 ; 0000-0001-7288-4229 ; 0000-0002-8070-2891 ; 0000-0001-5216-8970 ; 0000-0001-5581-5002 ; 0000-0003-2615-6866</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biomaterials.2024.122527$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38518591$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pugazhendhi, Abinaya Sindu</creatorcontrib><creatorcontrib>Neal, Craig J.</creatorcontrib><creatorcontrib>Ta, Khoa Minh</creatorcontrib><creatorcontrib>Molinari, Marco</creatorcontrib><creatorcontrib>Kumar, Udit</creatorcontrib><creatorcontrib>Wei, Fei</creatorcontrib><creatorcontrib>Kolanthai, Elayaraja</creatorcontrib><creatorcontrib>Ady, Andrew</creatorcontrib><creatorcontrib>Drake, Christina</creatorcontrib><creatorcontrib>Hughes, Megan</creatorcontrib><creatorcontrib>Yooseph, Shibu</creatorcontrib><creatorcontrib>Seal, Sudipta</creatorcontrib><creatorcontrib>Coathup, Melanie J.</creatorcontrib><title>A neoteric antibacterial ceria-silver nanozyme for abiotic surfaces</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Community-associated and hospital-acquired infections caused by bacteria continue to yield major global challenges to human health. Bacterial contamination on abiotic surfaces is largely spread via high-touch surfaces and contemporary standard disinfection practices show limited efficacy, resulting in unsatisfactory therapeutic outcomes. New strategies that offer non-specific and broad protection are urgently needed. Herein, we report our novel ceria-silver nanozyme engineered at a molar ratio of 5:1 and with a higher trivalent (Ce3+) surface fraction. Our results reveal potent levels of surface catalytic activity on both wet and dry surfaces, with rapid, and complete eradication of Pseudomonas aeruginosa, Staphylococcus aureus, and methicillin resistant S. aureus, in both planktonic and biofilm form. Preferential electrostatic adherence of anionic bacteria to the cationic nanozyme surface leads to a catastrophic loss in both aerobic and anaerobic respiration, DNA damage, osmodysregulation, and finally, programmed bacterial lysis. Our data reveal several unique mechanistic avenues of synergistic ceria-Ag efficacy. Ag potentially increases the presence of Ce3+ sites at the ceria-Ag interface, thereby facilitating the formation of harmful H2O2, followed by likely permeation across the cell wall. Further, a weakened Ag-induced Ce–O bond may drive electron transfer from the Ec band to O2, thereby further facilitating the selective reduction of O2 toward H2O2 formation. Ag destabilizes the surface adsorption of molecular H2O2, potentially leading to higher concentrations of free H2O2 adjacent to bacteria. To this end, our results show that H2O2 and/or NO/NO2−/NO3− are the key liberators of antibacterial activity, with a limited immediate role being offered by nanozyme-induced ROS including O2•- and OH•, and likely other light-activated radicals. A mini-pilot proof-of-concept study performed in a pediatric dental clinic setting confirms residual, and continual nanozyme antibacterial efficacy over a 28-day period. These findings open a new approach to alleviate infections caused by bacteria for use on high-touch hard surfaces. o Bacteria continue to yield major global challenges to human health.o A novel ceria-silver nanozyme engineered at a molar ratio of 5:1 and with a higher trivalent (Ce3+) surface fraction delivers superior catalytic activity.o The unique synergistic material formulation potently eradicates multispecies inoculations after repeated surface rechallenges.o The key liberator of antibacterial nanozyme activity is hydrogen peroxide and not reactive oxygen species formation. [Display omitted]</description><subject>Agent</subject><subject>Antibacterial</subject><subject>Biocidal</subject><subject>Biofilm</subject><subject>Ceria</subject><subject>Disinfection</subject><subject>Infection</subject><subject>Silver</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNkF1LwzAUhoMobk7_ghSvvOlMTpI29W7MTxh4o9chTRPI6MdM2sH89aZ0ipdeHQLPed-cB6EbgpcEk-xuuyxd16jeeKfqsAQMbEkAOOQnaE5ELlJeYH6K5pgwSIuMwAxdhLDF8Y0ZnKMZFZwIXpA5Wq-S1nRjlE5U27tS6Sk30eNIg6v3xietaruvQ2MS2_lExfo-8mHwVmkTLtGZjR8xV8e5QB9Pj-_rl3Tz9vy6Xm1STQXuUw4MVFXYnFJRcWUyTS0wykXGBYOKWlECBaUya0HzklEMQEstMg0VKStBF-h2yt357nMwoZeNC9rUtYonDEFCkTOMc8FxRO8nVPsuBG-s3HnXKH-QBMtRotzKvxLlKFFOEuPy9bFnKBtT_a7-WIvAwwSYeO3eGS-DdqbVpnLe6F5WnftPzzeaAInB</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Pugazhendhi, Abinaya Sindu</creator><creator>Neal, Craig J.</creator><creator>Ta, Khoa Minh</creator><creator>Molinari, Marco</creator><creator>Kumar, Udit</creator><creator>Wei, Fei</creator><creator>Kolanthai, Elayaraja</creator><creator>Ady, Andrew</creator><creator>Drake, Christina</creator><creator>Hughes, Megan</creator><creator>Yooseph, Shibu</creator><creator>Seal, Sudipta</creator><creator>Coathup, Melanie J.</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4543-4756</orcidid><orcidid>https://orcid.org/0000-0001-7288-4229</orcidid><orcidid>https://orcid.org/0000-0002-8070-2891</orcidid><orcidid>https://orcid.org/0000-0001-5216-8970</orcidid><orcidid>https://orcid.org/0000-0001-5581-5002</orcidid><orcidid>https://orcid.org/0000-0003-2615-6866</orcidid></search><sort><creationdate>20240601</creationdate><title>A neoteric antibacterial ceria-silver nanozyme for abiotic surfaces</title><author>Pugazhendhi, Abinaya Sindu ; Neal, Craig J. ; Ta, Khoa Minh ; Molinari, Marco ; Kumar, Udit ; Wei, Fei ; Kolanthai, Elayaraja ; Ady, Andrew ; Drake, Christina ; Hughes, Megan ; Yooseph, Shibu ; Seal, Sudipta ; Coathup, Melanie J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-5242ad9f7338d5ae6c3f2435865842d3f8b232aa6ff2c5b430223bc86c2d1bd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agent</topic><topic>Antibacterial</topic><topic>Biocidal</topic><topic>Biofilm</topic><topic>Ceria</topic><topic>Disinfection</topic><topic>Infection</topic><topic>Silver</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pugazhendhi, Abinaya Sindu</creatorcontrib><creatorcontrib>Neal, Craig J.</creatorcontrib><creatorcontrib>Ta, Khoa Minh</creatorcontrib><creatorcontrib>Molinari, Marco</creatorcontrib><creatorcontrib>Kumar, Udit</creatorcontrib><creatorcontrib>Wei, Fei</creatorcontrib><creatorcontrib>Kolanthai, Elayaraja</creatorcontrib><creatorcontrib>Ady, Andrew</creatorcontrib><creatorcontrib>Drake, Christina</creatorcontrib><creatorcontrib>Hughes, Megan</creatorcontrib><creatorcontrib>Yooseph, Shibu</creatorcontrib><creatorcontrib>Seal, Sudipta</creatorcontrib><creatorcontrib>Coathup, Melanie J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pugazhendhi, Abinaya Sindu</au><au>Neal, Craig J.</au><au>Ta, Khoa Minh</au><au>Molinari, Marco</au><au>Kumar, Udit</au><au>Wei, Fei</au><au>Kolanthai, Elayaraja</au><au>Ady, Andrew</au><au>Drake, Christina</au><au>Hughes, Megan</au><au>Yooseph, Shibu</au><au>Seal, Sudipta</au><au>Coathup, Melanie J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A neoteric antibacterial ceria-silver nanozyme for abiotic surfaces</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>307</volume><spage>122527</spage><epage>122527</epage><pages>122527-122527</pages><artnum>122527</artnum><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Community-associated and hospital-acquired infections caused by bacteria continue to yield major global challenges to human health. Bacterial contamination on abiotic surfaces is largely spread via high-touch surfaces and contemporary standard disinfection practices show limited efficacy, resulting in unsatisfactory therapeutic outcomes. New strategies that offer non-specific and broad protection are urgently needed. Herein, we report our novel ceria-silver nanozyme engineered at a molar ratio of 5:1 and with a higher trivalent (Ce3+) surface fraction. Our results reveal potent levels of surface catalytic activity on both wet and dry surfaces, with rapid, and complete eradication of Pseudomonas aeruginosa, Staphylococcus aureus, and methicillin resistant S. aureus, in both planktonic and biofilm form. Preferential electrostatic adherence of anionic bacteria to the cationic nanozyme surface leads to a catastrophic loss in both aerobic and anaerobic respiration, DNA damage, osmodysregulation, and finally, programmed bacterial lysis. Our data reveal several unique mechanistic avenues of synergistic ceria-Ag efficacy. Ag potentially increases the presence of Ce3+ sites at the ceria-Ag interface, thereby facilitating the formation of harmful H2O2, followed by likely permeation across the cell wall. Further, a weakened Ag-induced Ce–O bond may drive electron transfer from the Ec band to O2, thereby further facilitating the selective reduction of O2 toward H2O2 formation. Ag destabilizes the surface adsorption of molecular H2O2, potentially leading to higher concentrations of free H2O2 adjacent to bacteria. To this end, our results show that H2O2 and/or NO/NO2−/NO3− are the key liberators of antibacterial activity, with a limited immediate role being offered by nanozyme-induced ROS including O2•- and OH•, and likely other light-activated radicals. A mini-pilot proof-of-concept study performed in a pediatric dental clinic setting confirms residual, and continual nanozyme antibacterial efficacy over a 28-day period. These findings open a new approach to alleviate infections caused by bacteria for use on high-touch hard surfaces. o Bacteria continue to yield major global challenges to human health.o A novel ceria-silver nanozyme engineered at a molar ratio of 5:1 and with a higher trivalent (Ce3+) surface fraction delivers superior catalytic activity.o The unique synergistic material formulation potently eradicates multispecies inoculations after repeated surface rechallenges.o The key liberator of antibacterial nanozyme activity is hydrogen peroxide and not reactive oxygen species formation. [Display omitted]</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>38518591</pmid><doi>10.1016/j.biomaterials.2024.122527</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4543-4756</orcidid><orcidid>https://orcid.org/0000-0001-7288-4229</orcidid><orcidid>https://orcid.org/0000-0002-8070-2891</orcidid><orcidid>https://orcid.org/0000-0001-5216-8970</orcidid><orcidid>https://orcid.org/0000-0001-5581-5002</orcidid><orcidid>https://orcid.org/0000-0003-2615-6866</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2024-06, Vol.307, p.122527-122527, Article 122527
issn 0142-9612
1878-5905
language eng
recordid cdi_proquest_miscellaneous_2974007850
source ScienceDirect Journals (5 years ago - present)
subjects Agent
Antibacterial
Biocidal
Biofilm
Ceria
Disinfection
Infection
Silver
title A neoteric antibacterial ceria-silver nanozyme for abiotic surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T10%3A59%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20neoteric%20antibacterial%20ceria-silver%20nanozyme%20for%20abiotic%20surfaces&rft.jtitle=Biomaterials&rft.au=Pugazhendhi,%20Abinaya%20Sindu&rft.date=2024-06-01&rft.volume=307&rft.spage=122527&rft.epage=122527&rft.pages=122527-122527&rft.artnum=122527&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2024.122527&rft_dat=%3Cproquest_cross%3E2974007850%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2974007850&rft_id=info:pmid/38518591&rft_els_id=S0142961224000619&rfr_iscdi=true