Fragile X cortex is characterized by decreased parvalbumin-expressing interneurons

Fragile X syndrome is a genetic neurodevelopmental disorder caused by a mutation of the fragile X messenger ribonucleoprotein 1 (FMR1) gene in the X chromosome. Many fragile X syndrome cases present with autism spectrum disorder and fragile X syndrome cases account for up to 5% of all autism spectru...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cerebral cortex (New York, N.Y. 1991) N.Y. 1991), 2024-03, Vol.34 (3)
Hauptverfasser: Juarez, Pablo, Salcedo-Arellano, Maria Jimena, Dufour, Brett, Martinez-Cerdeño, Veronica
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fragile X syndrome is a genetic neurodevelopmental disorder caused by a mutation of the fragile X messenger ribonucleoprotein 1 (FMR1) gene in the X chromosome. Many fragile X syndrome cases present with autism spectrum disorder and fragile X syndrome cases account for up to 5% of all autism spectrum disorder cases. The cellular composition of the fragile X syndrome cortex is not well known. We evaluated alterations in the number of Calbindin, Calretinin, and Parvalbumin expressing interneurons across 5 different cortical areas, medial prefrontal cortex (BA46), primary somatosensory cortex (BA3), primary motor cortex (BA4), superior temporal cortex (BA22), and anterior cingulate cortex (BA24) of fragile X syndrome and neurotypical brains. Compared with neurotypical cases, fragile X syndrome brains displayed a significant reduction in the number of PV+ interneurons in all areas and of CR+ interneurons in BA22 and BA3. The number of CB+ interneurons did not differ. These findings are the first to demonstrate that fragile X syndrome brains are characterized by cortical wide PV+ interneuron deficits across multiple cortical areas. These add to the idea that deficits in PV+ interneurons could disrupt the cortical balance and promote clinical deficits in fragile X syndrome patients and help to develop novel therapies for neurodevelopmental disorders like fragile X syndrome and autism spectrum disorder.
ISSN:1047-3211
1460-2199
DOI:10.1093/cercor/bhae103