Metaplastic regeneration in the mouse stomach requires a reactive oxygen species pathway
In pyloric metaplasia, mature gastric chief cells reprogram via an evolutionarily conserved process termed paligenosis to re-enter the cell cycle and become spasmolytic polypeptide-expressing metaplasia (SPEM) cells. Here, we use single-cell RNA sequencing (scRNA-seq) following injury to the murine...
Gespeichert in:
Veröffentlicht in: | Developmental cell 2024-05, Vol.59 (9), p.1175-1191.e7 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1191.e7 |
---|---|
container_issue | 9 |
container_start_page | 1175 |
container_title | Developmental cell |
container_volume | 59 |
creator | Miao, Zhi-Feng Sun, Jing-Xu Huang, Xuan-Zhang Bai, Shi Pang, Min-Jiao Li, Jia-Yi Chen, Han-Yu Tong, Qi-Yue Ye, Shi-Yu Wang, Xin-Yu Hu, Xiao-Hai Li, Jing-Ying Zou, Jin-Wei Xu, Wen Yang, Jun-hao Lu, Xi Mills, Jason C. Wang, Zhen-Ning |
description | In pyloric metaplasia, mature gastric chief cells reprogram via an evolutionarily conserved process termed paligenosis to re-enter the cell cycle and become spasmolytic polypeptide-expressing metaplasia (SPEM) cells. Here, we use single-cell RNA sequencing (scRNA-seq) following injury to the murine stomach to analyze mechanisms governing paligenosis at high resolution. Injury causes induced reactive oxygen species (ROS) with coordinated changes in mitochondrial activity and cellular metabolism, requiring the transcriptional mitochondrial regulator Ppargc1a (Pgc1α) and ROS regulator Nf2el2 (Nrf2). Loss of the ROS and mitochondrial control in Ppargc1a−/− mice causes the death of paligenotic cells through ferroptosis. Blocking the cystine transporter SLC7A11(xCT), which is critical in lipid radical detoxification through glutathione peroxidase 4 (GPX4), also increases ferroptosis. Finally, we show that PGC1α-mediated ROS and mitochondrial changes also underlie the paligenosis of pancreatic acinar cells. Altogether, the results detail how metabolic and mitochondrial changes are necessary for injury response, regeneration, and metaplasia in the stomach.
[Display omitted]
•scRNA-seq tracked gastric chief-cell mRNA changes during injury-induced metaplasia•Three distinct stages of chief-cell metaplastic reprogramming (paligenosis) were seen•Pgc1α controls late-stage paligenotic cell mitochondrial activity and metabolism•PGC1α-NRF2-xCT-GPX4 axis helps paligenotic cells suppress ferroptotic death
Miao et al. provide a single-cell transcriptomic atlas of metaplastic regeneration in the stomach (paligenosis), identifying transcriptional signatures of three distinct stages. Paligenotic cells must control mitochondrial activity in response to ROS using a PGC1α-xCT-GPX4 axis, and failed ROS scavenging blocks paligenosis and promotes cell death by ferroptosis. |
doi_str_mv | 10.1016/j.devcel.2024.03.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2974007243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1534580724001424</els_id><sourcerecordid>2974007243</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-e38bc0110d141c888621728b5a37592ea2724a2f7959a7b0d574d4b7d04265e83</originalsourceid><addsrcrecordid>eNp9kEtLAzEQx4Movr-ByB697Dp5NelFEPEFFS8K3kI2O7Up3UeTtNpvb6Tq0dMMzO8_k_wIOaNQUaCjy3nV4NrhomLARAW8AmA75JBqpUsqJd3NveSilBrUATmKcQ45RjXskwOuJaMg5SF5e8Jkh4WNybsi4Dt2GGzyfVf4rkgzLNp-FbGIqW-tm2ViufIBY2Fza13yayz6z02OFXFA5_NksGn2YTcnZG9qFxFPf-oxeb27fbl5KCfP948315PS8RFLJXJdO6AUGiqo01qPGFVM19JyJccMLVNMWDZVYzm2qoZGKtGIWjUg2Eii5sfkYrt3CP1yhTGZ1sesZWE7zE83bKwEQF7CMyq2qAt9jAGnZgi-tWFjKJhvp2Zutk7Nt1MD3GSnOXb-c2FVt9j8hX4lZuBqC2D-59pjMDGb6Bw2WZVLpun9_xe-AAPEiY8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2974007243</pqid></control><display><type>article</type><title>Metaplastic regeneration in the mouse stomach requires a reactive oxygen species pathway</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Miao, Zhi-Feng ; Sun, Jing-Xu ; Huang, Xuan-Zhang ; Bai, Shi ; Pang, Min-Jiao ; Li, Jia-Yi ; Chen, Han-Yu ; Tong, Qi-Yue ; Ye, Shi-Yu ; Wang, Xin-Yu ; Hu, Xiao-Hai ; Li, Jing-Ying ; Zou, Jin-Wei ; Xu, Wen ; Yang, Jun-hao ; Lu, Xi ; Mills, Jason C. ; Wang, Zhen-Ning</creator><creatorcontrib>Miao, Zhi-Feng ; Sun, Jing-Xu ; Huang, Xuan-Zhang ; Bai, Shi ; Pang, Min-Jiao ; Li, Jia-Yi ; Chen, Han-Yu ; Tong, Qi-Yue ; Ye, Shi-Yu ; Wang, Xin-Yu ; Hu, Xiao-Hai ; Li, Jing-Ying ; Zou, Jin-Wei ; Xu, Wen ; Yang, Jun-hao ; Lu, Xi ; Mills, Jason C. ; Wang, Zhen-Ning</creatorcontrib><description>In pyloric metaplasia, mature gastric chief cells reprogram via an evolutionarily conserved process termed paligenosis to re-enter the cell cycle and become spasmolytic polypeptide-expressing metaplasia (SPEM) cells. Here, we use single-cell RNA sequencing (scRNA-seq) following injury to the murine stomach to analyze mechanisms governing paligenosis at high resolution. Injury causes induced reactive oxygen species (ROS) with coordinated changes in mitochondrial activity and cellular metabolism, requiring the transcriptional mitochondrial regulator Ppargc1a (Pgc1α) and ROS regulator Nf2el2 (Nrf2). Loss of the ROS and mitochondrial control in Ppargc1a−/− mice causes the death of paligenotic cells through ferroptosis. Blocking the cystine transporter SLC7A11(xCT), which is critical in lipid radical detoxification through glutathione peroxidase 4 (GPX4), also increases ferroptosis. Finally, we show that PGC1α-mediated ROS and mitochondrial changes also underlie the paligenosis of pancreatic acinar cells. Altogether, the results detail how metabolic and mitochondrial changes are necessary for injury response, regeneration, and metaplasia in the stomach.
[Display omitted]
•scRNA-seq tracked gastric chief-cell mRNA changes during injury-induced metaplasia•Three distinct stages of chief-cell metaplastic reprogramming (paligenosis) were seen•Pgc1α controls late-stage paligenotic cell mitochondrial activity and metabolism•PGC1α-NRF2-xCT-GPX4 axis helps paligenotic cells suppress ferroptotic death
Miao et al. provide a single-cell transcriptomic atlas of metaplastic regeneration in the stomach (paligenosis), identifying transcriptional signatures of three distinct stages. Paligenotic cells must control mitochondrial activity in response to ROS using a PGC1α-xCT-GPX4 axis, and failed ROS scavenging blocks paligenosis and promotes cell death by ferroptosis.</description><identifier>ISSN: 1534-5807</identifier><identifier>EISSN: 1878-1551</identifier><identifier>DOI: 10.1016/j.devcel.2024.03.002</identifier><identifier>PMID: 38521055</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Acinar Cells - metabolism ; Amino Acid Transport System y+ - genetics ; Amino Acid Transport System y+ - metabolism ; Animals ; cerulein ; Chief Cells, Gastric - metabolism ; DMP777 ; ferroptosis ; Ferroptosis - physiology ; gastric metaplasia ; Gastric Mucosa - metabolism ; high-dose tamoxifen ; Intercellular Signaling Peptides and Proteins ; metabolic reprogramming ; Metaplasia - metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; mitochondria ; Mitochondria - metabolism ; NF-E2-Related Factor 2 - genetics ; NF-E2-Related Factor 2 - metabolism ; paligenosis ; pancreatic acinar-ductal metaplasia ; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - genetics ; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism ; Phospholipid Hydroperoxide Glutathione Peroxidase ; Reactive Oxygen Species - metabolism ; Regeneration - physiology ; Stomach - pathology</subject><ispartof>Developmental cell, 2024-05, Vol.59 (9), p.1175-1191.e7</ispartof><rights>2024 Elsevier Inc.</rights><rights>Copyright © 2024 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-e38bc0110d141c888621728b5a37592ea2724a2f7959a7b0d574d4b7d04265e83</citedby><cites>FETCH-LOGICAL-c362t-e38bc0110d141c888621728b5a37592ea2724a2f7959a7b0d574d4b7d04265e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.devcel.2024.03.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3554,27933,27934,46004</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38521055$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Miao, Zhi-Feng</creatorcontrib><creatorcontrib>Sun, Jing-Xu</creatorcontrib><creatorcontrib>Huang, Xuan-Zhang</creatorcontrib><creatorcontrib>Bai, Shi</creatorcontrib><creatorcontrib>Pang, Min-Jiao</creatorcontrib><creatorcontrib>Li, Jia-Yi</creatorcontrib><creatorcontrib>Chen, Han-Yu</creatorcontrib><creatorcontrib>Tong, Qi-Yue</creatorcontrib><creatorcontrib>Ye, Shi-Yu</creatorcontrib><creatorcontrib>Wang, Xin-Yu</creatorcontrib><creatorcontrib>Hu, Xiao-Hai</creatorcontrib><creatorcontrib>Li, Jing-Ying</creatorcontrib><creatorcontrib>Zou, Jin-Wei</creatorcontrib><creatorcontrib>Xu, Wen</creatorcontrib><creatorcontrib>Yang, Jun-hao</creatorcontrib><creatorcontrib>Lu, Xi</creatorcontrib><creatorcontrib>Mills, Jason C.</creatorcontrib><creatorcontrib>Wang, Zhen-Ning</creatorcontrib><title>Metaplastic regeneration in the mouse stomach requires a reactive oxygen species pathway</title><title>Developmental cell</title><addtitle>Dev Cell</addtitle><description>In pyloric metaplasia, mature gastric chief cells reprogram via an evolutionarily conserved process termed paligenosis to re-enter the cell cycle and become spasmolytic polypeptide-expressing metaplasia (SPEM) cells. Here, we use single-cell RNA sequencing (scRNA-seq) following injury to the murine stomach to analyze mechanisms governing paligenosis at high resolution. Injury causes induced reactive oxygen species (ROS) with coordinated changes in mitochondrial activity and cellular metabolism, requiring the transcriptional mitochondrial regulator Ppargc1a (Pgc1α) and ROS regulator Nf2el2 (Nrf2). Loss of the ROS and mitochondrial control in Ppargc1a−/− mice causes the death of paligenotic cells through ferroptosis. Blocking the cystine transporter SLC7A11(xCT), which is critical in lipid radical detoxification through glutathione peroxidase 4 (GPX4), also increases ferroptosis. Finally, we show that PGC1α-mediated ROS and mitochondrial changes also underlie the paligenosis of pancreatic acinar cells. Altogether, the results detail how metabolic and mitochondrial changes are necessary for injury response, regeneration, and metaplasia in the stomach.
[Display omitted]
•scRNA-seq tracked gastric chief-cell mRNA changes during injury-induced metaplasia•Three distinct stages of chief-cell metaplastic reprogramming (paligenosis) were seen•Pgc1α controls late-stage paligenotic cell mitochondrial activity and metabolism•PGC1α-NRF2-xCT-GPX4 axis helps paligenotic cells suppress ferroptotic death
Miao et al. provide a single-cell transcriptomic atlas of metaplastic regeneration in the stomach (paligenosis), identifying transcriptional signatures of three distinct stages. Paligenotic cells must control mitochondrial activity in response to ROS using a PGC1α-xCT-GPX4 axis, and failed ROS scavenging blocks paligenosis and promotes cell death by ferroptosis.</description><subject>Acinar Cells - metabolism</subject><subject>Amino Acid Transport System y+ - genetics</subject><subject>Amino Acid Transport System y+ - metabolism</subject><subject>Animals</subject><subject>cerulein</subject><subject>Chief Cells, Gastric - metabolism</subject><subject>DMP777</subject><subject>ferroptosis</subject><subject>Ferroptosis - physiology</subject><subject>gastric metaplasia</subject><subject>Gastric Mucosa - metabolism</subject><subject>high-dose tamoxifen</subject><subject>Intercellular Signaling Peptides and Proteins</subject><subject>metabolic reprogramming</subject><subject>Metaplasia - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>NF-E2-Related Factor 2 - genetics</subject><subject>NF-E2-Related Factor 2 - metabolism</subject><subject>paligenosis</subject><subject>pancreatic acinar-ductal metaplasia</subject><subject>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - genetics</subject><subject>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism</subject><subject>Phospholipid Hydroperoxide Glutathione Peroxidase</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Regeneration - physiology</subject><subject>Stomach - pathology</subject><issn>1534-5807</issn><issn>1878-1551</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtLAzEQx4Movr-ByB697Dp5NelFEPEFFS8K3kI2O7Up3UeTtNpvb6Tq0dMMzO8_k_wIOaNQUaCjy3nV4NrhomLARAW8AmA75JBqpUsqJd3NveSilBrUATmKcQ45RjXskwOuJaMg5SF5e8Jkh4WNybsi4Dt2GGzyfVf4rkgzLNp-FbGIqW-tm2ViufIBY2Fza13yayz6z02OFXFA5_NksGn2YTcnZG9qFxFPf-oxeb27fbl5KCfP948315PS8RFLJXJdO6AUGiqo01qPGFVM19JyJccMLVNMWDZVYzm2qoZGKtGIWjUg2Eii5sfkYrt3CP1yhTGZ1sesZWE7zE83bKwEQF7CMyq2qAt9jAGnZgi-tWFjKJhvp2Zutk7Nt1MD3GSnOXb-c2FVt9j8hX4lZuBqC2D-59pjMDGb6Bw2WZVLpun9_xe-AAPEiY8</recordid><startdate>20240506</startdate><enddate>20240506</enddate><creator>Miao, Zhi-Feng</creator><creator>Sun, Jing-Xu</creator><creator>Huang, Xuan-Zhang</creator><creator>Bai, Shi</creator><creator>Pang, Min-Jiao</creator><creator>Li, Jia-Yi</creator><creator>Chen, Han-Yu</creator><creator>Tong, Qi-Yue</creator><creator>Ye, Shi-Yu</creator><creator>Wang, Xin-Yu</creator><creator>Hu, Xiao-Hai</creator><creator>Li, Jing-Ying</creator><creator>Zou, Jin-Wei</creator><creator>Xu, Wen</creator><creator>Yang, Jun-hao</creator><creator>Lu, Xi</creator><creator>Mills, Jason C.</creator><creator>Wang, Zhen-Ning</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20240506</creationdate><title>Metaplastic regeneration in the mouse stomach requires a reactive oxygen species pathway</title><author>Miao, Zhi-Feng ; Sun, Jing-Xu ; Huang, Xuan-Zhang ; Bai, Shi ; Pang, Min-Jiao ; Li, Jia-Yi ; Chen, Han-Yu ; Tong, Qi-Yue ; Ye, Shi-Yu ; Wang, Xin-Yu ; Hu, Xiao-Hai ; Li, Jing-Ying ; Zou, Jin-Wei ; Xu, Wen ; Yang, Jun-hao ; Lu, Xi ; Mills, Jason C. ; Wang, Zhen-Ning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-e38bc0110d141c888621728b5a37592ea2724a2f7959a7b0d574d4b7d04265e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acinar Cells - metabolism</topic><topic>Amino Acid Transport System y+ - genetics</topic><topic>Amino Acid Transport System y+ - metabolism</topic><topic>Animals</topic><topic>cerulein</topic><topic>Chief Cells, Gastric - metabolism</topic><topic>DMP777</topic><topic>ferroptosis</topic><topic>Ferroptosis - physiology</topic><topic>gastric metaplasia</topic><topic>Gastric Mucosa - metabolism</topic><topic>high-dose tamoxifen</topic><topic>Intercellular Signaling Peptides and Proteins</topic><topic>metabolic reprogramming</topic><topic>Metaplasia - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>NF-E2-Related Factor 2 - genetics</topic><topic>NF-E2-Related Factor 2 - metabolism</topic><topic>paligenosis</topic><topic>pancreatic acinar-ductal metaplasia</topic><topic>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - genetics</topic><topic>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism</topic><topic>Phospholipid Hydroperoxide Glutathione Peroxidase</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Regeneration - physiology</topic><topic>Stomach - pathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miao, Zhi-Feng</creatorcontrib><creatorcontrib>Sun, Jing-Xu</creatorcontrib><creatorcontrib>Huang, Xuan-Zhang</creatorcontrib><creatorcontrib>Bai, Shi</creatorcontrib><creatorcontrib>Pang, Min-Jiao</creatorcontrib><creatorcontrib>Li, Jia-Yi</creatorcontrib><creatorcontrib>Chen, Han-Yu</creatorcontrib><creatorcontrib>Tong, Qi-Yue</creatorcontrib><creatorcontrib>Ye, Shi-Yu</creatorcontrib><creatorcontrib>Wang, Xin-Yu</creatorcontrib><creatorcontrib>Hu, Xiao-Hai</creatorcontrib><creatorcontrib>Li, Jing-Ying</creatorcontrib><creatorcontrib>Zou, Jin-Wei</creatorcontrib><creatorcontrib>Xu, Wen</creatorcontrib><creatorcontrib>Yang, Jun-hao</creatorcontrib><creatorcontrib>Lu, Xi</creatorcontrib><creatorcontrib>Mills, Jason C.</creatorcontrib><creatorcontrib>Wang, Zhen-Ning</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Developmental cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miao, Zhi-Feng</au><au>Sun, Jing-Xu</au><au>Huang, Xuan-Zhang</au><au>Bai, Shi</au><au>Pang, Min-Jiao</au><au>Li, Jia-Yi</au><au>Chen, Han-Yu</au><au>Tong, Qi-Yue</au><au>Ye, Shi-Yu</au><au>Wang, Xin-Yu</au><au>Hu, Xiao-Hai</au><au>Li, Jing-Ying</au><au>Zou, Jin-Wei</au><au>Xu, Wen</au><au>Yang, Jun-hao</au><au>Lu, Xi</au><au>Mills, Jason C.</au><au>Wang, Zhen-Ning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metaplastic regeneration in the mouse stomach requires a reactive oxygen species pathway</atitle><jtitle>Developmental cell</jtitle><addtitle>Dev Cell</addtitle><date>2024-05-06</date><risdate>2024</risdate><volume>59</volume><issue>9</issue><spage>1175</spage><epage>1191.e7</epage><pages>1175-1191.e7</pages><issn>1534-5807</issn><eissn>1878-1551</eissn><abstract>In pyloric metaplasia, mature gastric chief cells reprogram via an evolutionarily conserved process termed paligenosis to re-enter the cell cycle and become spasmolytic polypeptide-expressing metaplasia (SPEM) cells. Here, we use single-cell RNA sequencing (scRNA-seq) following injury to the murine stomach to analyze mechanisms governing paligenosis at high resolution. Injury causes induced reactive oxygen species (ROS) with coordinated changes in mitochondrial activity and cellular metabolism, requiring the transcriptional mitochondrial regulator Ppargc1a (Pgc1α) and ROS regulator Nf2el2 (Nrf2). Loss of the ROS and mitochondrial control in Ppargc1a−/− mice causes the death of paligenotic cells through ferroptosis. Blocking the cystine transporter SLC7A11(xCT), which is critical in lipid radical detoxification through glutathione peroxidase 4 (GPX4), also increases ferroptosis. Finally, we show that PGC1α-mediated ROS and mitochondrial changes also underlie the paligenosis of pancreatic acinar cells. Altogether, the results detail how metabolic and mitochondrial changes are necessary for injury response, regeneration, and metaplasia in the stomach.
[Display omitted]
•scRNA-seq tracked gastric chief-cell mRNA changes during injury-induced metaplasia•Three distinct stages of chief-cell metaplastic reprogramming (paligenosis) were seen•Pgc1α controls late-stage paligenotic cell mitochondrial activity and metabolism•PGC1α-NRF2-xCT-GPX4 axis helps paligenotic cells suppress ferroptotic death
Miao et al. provide a single-cell transcriptomic atlas of metaplastic regeneration in the stomach (paligenosis), identifying transcriptional signatures of three distinct stages. Paligenotic cells must control mitochondrial activity in response to ROS using a PGC1α-xCT-GPX4 axis, and failed ROS scavenging blocks paligenosis and promotes cell death by ferroptosis.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>38521055</pmid><doi>10.1016/j.devcel.2024.03.002</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1534-5807 |
ispartof | Developmental cell, 2024-05, Vol.59 (9), p.1175-1191.e7 |
issn | 1534-5807 1878-1551 |
language | eng |
recordid | cdi_proquest_miscellaneous_2974007243 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Acinar Cells - metabolism Amino Acid Transport System y+ - genetics Amino Acid Transport System y+ - metabolism Animals cerulein Chief Cells, Gastric - metabolism DMP777 ferroptosis Ferroptosis - physiology gastric metaplasia Gastric Mucosa - metabolism high-dose tamoxifen Intercellular Signaling Peptides and Proteins metabolic reprogramming Metaplasia - metabolism Mice Mice, Inbred C57BL Mice, Knockout mitochondria Mitochondria - metabolism NF-E2-Related Factor 2 - genetics NF-E2-Related Factor 2 - metabolism paligenosis pancreatic acinar-ductal metaplasia Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - genetics Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism Phospholipid Hydroperoxide Glutathione Peroxidase Reactive Oxygen Species - metabolism Regeneration - physiology Stomach - pathology |
title | Metaplastic regeneration in the mouse stomach requires a reactive oxygen species pathway |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T09%3A27%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metaplastic%20regeneration%20in%20the%20mouse%20stomach%20requires%20a%20reactive%20oxygen%20species%20pathway&rft.jtitle=Developmental%20cell&rft.au=Miao,%20Zhi-Feng&rft.date=2024-05-06&rft.volume=59&rft.issue=9&rft.spage=1175&rft.epage=1191.e7&rft.pages=1175-1191.e7&rft.issn=1534-5807&rft.eissn=1878-1551&rft_id=info:doi/10.1016/j.devcel.2024.03.002&rft_dat=%3Cproquest_cross%3E2974007243%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2974007243&rft_id=info:pmid/38521055&rft_els_id=S1534580724001424&rfr_iscdi=true |