Metaplastic regeneration in the mouse stomach requires a reactive oxygen species pathway

In pyloric metaplasia, mature gastric chief cells reprogram via an evolutionarily conserved process termed paligenosis to re-enter the cell cycle and become spasmolytic polypeptide-expressing metaplasia (SPEM) cells. Here, we use single-cell RNA sequencing (scRNA-seq) following injury to the murine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Developmental cell 2024-05, Vol.59 (9), p.1175-1191.e7
Hauptverfasser: Miao, Zhi-Feng, Sun, Jing-Xu, Huang, Xuan-Zhang, Bai, Shi, Pang, Min-Jiao, Li, Jia-Yi, Chen, Han-Yu, Tong, Qi-Yue, Ye, Shi-Yu, Wang, Xin-Yu, Hu, Xiao-Hai, Li, Jing-Ying, Zou, Jin-Wei, Xu, Wen, Yang, Jun-hao, Lu, Xi, Mills, Jason C., Wang, Zhen-Ning
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1191.e7
container_issue 9
container_start_page 1175
container_title Developmental cell
container_volume 59
creator Miao, Zhi-Feng
Sun, Jing-Xu
Huang, Xuan-Zhang
Bai, Shi
Pang, Min-Jiao
Li, Jia-Yi
Chen, Han-Yu
Tong, Qi-Yue
Ye, Shi-Yu
Wang, Xin-Yu
Hu, Xiao-Hai
Li, Jing-Ying
Zou, Jin-Wei
Xu, Wen
Yang, Jun-hao
Lu, Xi
Mills, Jason C.
Wang, Zhen-Ning
description In pyloric metaplasia, mature gastric chief cells reprogram via an evolutionarily conserved process termed paligenosis to re-enter the cell cycle and become spasmolytic polypeptide-expressing metaplasia (SPEM) cells. Here, we use single-cell RNA sequencing (scRNA-seq) following injury to the murine stomach to analyze mechanisms governing paligenosis at high resolution. Injury causes induced reactive oxygen species (ROS) with coordinated changes in mitochondrial activity and cellular metabolism, requiring the transcriptional mitochondrial regulator Ppargc1a (Pgc1α) and ROS regulator Nf2el2 (Nrf2). Loss of the ROS and mitochondrial control in Ppargc1a−/− mice causes the death of paligenotic cells through ferroptosis. Blocking the cystine transporter SLC7A11(xCT), which is critical in lipid radical detoxification through glutathione peroxidase 4 (GPX4), also increases ferroptosis. Finally, we show that PGC1α-mediated ROS and mitochondrial changes also underlie the paligenosis of pancreatic acinar cells. Altogether, the results detail how metabolic and mitochondrial changes are necessary for injury response, regeneration, and metaplasia in the stomach. [Display omitted] •scRNA-seq tracked gastric chief-cell mRNA changes during injury-induced metaplasia•Three distinct stages of chief-cell metaplastic reprogramming (paligenosis) were seen•Pgc1α controls late-stage paligenotic cell mitochondrial activity and metabolism•PGC1α-NRF2-xCT-GPX4 axis helps paligenotic cells suppress ferroptotic death Miao et al. provide a single-cell transcriptomic atlas of metaplastic regeneration in the stomach (paligenosis), identifying transcriptional signatures of three distinct stages. Paligenotic cells must control mitochondrial activity in response to ROS using a PGC1α-xCT-GPX4 axis, and failed ROS scavenging blocks paligenosis and promotes cell death by ferroptosis.
doi_str_mv 10.1016/j.devcel.2024.03.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2974007243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1534580724001424</els_id><sourcerecordid>2974007243</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-e38bc0110d141c888621728b5a37592ea2724a2f7959a7b0d574d4b7d04265e83</originalsourceid><addsrcrecordid>eNp9kEtLAzEQx4Movr-ByB697Dp5NelFEPEFFS8K3kI2O7Up3UeTtNpvb6Tq0dMMzO8_k_wIOaNQUaCjy3nV4NrhomLARAW8AmA75JBqpUsqJd3NveSilBrUATmKcQ45RjXskwOuJaMg5SF5e8Jkh4WNybsi4Dt2GGzyfVf4rkgzLNp-FbGIqW-tm2ViufIBY2Fza13yayz6z02OFXFA5_NksGn2YTcnZG9qFxFPf-oxeb27fbl5KCfP948315PS8RFLJXJdO6AUGiqo01qPGFVM19JyJccMLVNMWDZVYzm2qoZGKtGIWjUg2Eii5sfkYrt3CP1yhTGZ1sesZWE7zE83bKwEQF7CMyq2qAt9jAGnZgi-tWFjKJhvp2Zutk7Nt1MD3GSnOXb-c2FVt9j8hX4lZuBqC2D-59pjMDGb6Bw2WZVLpun9_xe-AAPEiY8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2974007243</pqid></control><display><type>article</type><title>Metaplastic regeneration in the mouse stomach requires a reactive oxygen species pathway</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Miao, Zhi-Feng ; Sun, Jing-Xu ; Huang, Xuan-Zhang ; Bai, Shi ; Pang, Min-Jiao ; Li, Jia-Yi ; Chen, Han-Yu ; Tong, Qi-Yue ; Ye, Shi-Yu ; Wang, Xin-Yu ; Hu, Xiao-Hai ; Li, Jing-Ying ; Zou, Jin-Wei ; Xu, Wen ; Yang, Jun-hao ; Lu, Xi ; Mills, Jason C. ; Wang, Zhen-Ning</creator><creatorcontrib>Miao, Zhi-Feng ; Sun, Jing-Xu ; Huang, Xuan-Zhang ; Bai, Shi ; Pang, Min-Jiao ; Li, Jia-Yi ; Chen, Han-Yu ; Tong, Qi-Yue ; Ye, Shi-Yu ; Wang, Xin-Yu ; Hu, Xiao-Hai ; Li, Jing-Ying ; Zou, Jin-Wei ; Xu, Wen ; Yang, Jun-hao ; Lu, Xi ; Mills, Jason C. ; Wang, Zhen-Ning</creatorcontrib><description>In pyloric metaplasia, mature gastric chief cells reprogram via an evolutionarily conserved process termed paligenosis to re-enter the cell cycle and become spasmolytic polypeptide-expressing metaplasia (SPEM) cells. Here, we use single-cell RNA sequencing (scRNA-seq) following injury to the murine stomach to analyze mechanisms governing paligenosis at high resolution. Injury causes induced reactive oxygen species (ROS) with coordinated changes in mitochondrial activity and cellular metabolism, requiring the transcriptional mitochondrial regulator Ppargc1a (Pgc1α) and ROS regulator Nf2el2 (Nrf2). Loss of the ROS and mitochondrial control in Ppargc1a−/− mice causes the death of paligenotic cells through ferroptosis. Blocking the cystine transporter SLC7A11(xCT), which is critical in lipid radical detoxification through glutathione peroxidase 4 (GPX4), also increases ferroptosis. Finally, we show that PGC1α-mediated ROS and mitochondrial changes also underlie the paligenosis of pancreatic acinar cells. Altogether, the results detail how metabolic and mitochondrial changes are necessary for injury response, regeneration, and metaplasia in the stomach. [Display omitted] •scRNA-seq tracked gastric chief-cell mRNA changes during injury-induced metaplasia•Three distinct stages of chief-cell metaplastic reprogramming (paligenosis) were seen•Pgc1α controls late-stage paligenotic cell mitochondrial activity and metabolism•PGC1α-NRF2-xCT-GPX4 axis helps paligenotic cells suppress ferroptotic death Miao et al. provide a single-cell transcriptomic atlas of metaplastic regeneration in the stomach (paligenosis), identifying transcriptional signatures of three distinct stages. Paligenotic cells must control mitochondrial activity in response to ROS using a PGC1α-xCT-GPX4 axis, and failed ROS scavenging blocks paligenosis and promotes cell death by ferroptosis.</description><identifier>ISSN: 1534-5807</identifier><identifier>EISSN: 1878-1551</identifier><identifier>DOI: 10.1016/j.devcel.2024.03.002</identifier><identifier>PMID: 38521055</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Acinar Cells - metabolism ; Amino Acid Transport System y+ - genetics ; Amino Acid Transport System y+ - metabolism ; Animals ; cerulein ; Chief Cells, Gastric - metabolism ; DMP777 ; ferroptosis ; Ferroptosis - physiology ; gastric metaplasia ; Gastric Mucosa - metabolism ; high-dose tamoxifen ; Intercellular Signaling Peptides and Proteins ; metabolic reprogramming ; Metaplasia - metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; mitochondria ; Mitochondria - metabolism ; NF-E2-Related Factor 2 - genetics ; NF-E2-Related Factor 2 - metabolism ; paligenosis ; pancreatic acinar-ductal metaplasia ; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - genetics ; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism ; Phospholipid Hydroperoxide Glutathione Peroxidase ; Reactive Oxygen Species - metabolism ; Regeneration - physiology ; Stomach - pathology</subject><ispartof>Developmental cell, 2024-05, Vol.59 (9), p.1175-1191.e7</ispartof><rights>2024 Elsevier Inc.</rights><rights>Copyright © 2024 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-e38bc0110d141c888621728b5a37592ea2724a2f7959a7b0d574d4b7d04265e83</citedby><cites>FETCH-LOGICAL-c362t-e38bc0110d141c888621728b5a37592ea2724a2f7959a7b0d574d4b7d04265e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.devcel.2024.03.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3554,27933,27934,46004</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38521055$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Miao, Zhi-Feng</creatorcontrib><creatorcontrib>Sun, Jing-Xu</creatorcontrib><creatorcontrib>Huang, Xuan-Zhang</creatorcontrib><creatorcontrib>Bai, Shi</creatorcontrib><creatorcontrib>Pang, Min-Jiao</creatorcontrib><creatorcontrib>Li, Jia-Yi</creatorcontrib><creatorcontrib>Chen, Han-Yu</creatorcontrib><creatorcontrib>Tong, Qi-Yue</creatorcontrib><creatorcontrib>Ye, Shi-Yu</creatorcontrib><creatorcontrib>Wang, Xin-Yu</creatorcontrib><creatorcontrib>Hu, Xiao-Hai</creatorcontrib><creatorcontrib>Li, Jing-Ying</creatorcontrib><creatorcontrib>Zou, Jin-Wei</creatorcontrib><creatorcontrib>Xu, Wen</creatorcontrib><creatorcontrib>Yang, Jun-hao</creatorcontrib><creatorcontrib>Lu, Xi</creatorcontrib><creatorcontrib>Mills, Jason C.</creatorcontrib><creatorcontrib>Wang, Zhen-Ning</creatorcontrib><title>Metaplastic regeneration in the mouse stomach requires a reactive oxygen species pathway</title><title>Developmental cell</title><addtitle>Dev Cell</addtitle><description>In pyloric metaplasia, mature gastric chief cells reprogram via an evolutionarily conserved process termed paligenosis to re-enter the cell cycle and become spasmolytic polypeptide-expressing metaplasia (SPEM) cells. Here, we use single-cell RNA sequencing (scRNA-seq) following injury to the murine stomach to analyze mechanisms governing paligenosis at high resolution. Injury causes induced reactive oxygen species (ROS) with coordinated changes in mitochondrial activity and cellular metabolism, requiring the transcriptional mitochondrial regulator Ppargc1a (Pgc1α) and ROS regulator Nf2el2 (Nrf2). Loss of the ROS and mitochondrial control in Ppargc1a−/− mice causes the death of paligenotic cells through ferroptosis. Blocking the cystine transporter SLC7A11(xCT), which is critical in lipid radical detoxification through glutathione peroxidase 4 (GPX4), also increases ferroptosis. Finally, we show that PGC1α-mediated ROS and mitochondrial changes also underlie the paligenosis of pancreatic acinar cells. Altogether, the results detail how metabolic and mitochondrial changes are necessary for injury response, regeneration, and metaplasia in the stomach. [Display omitted] •scRNA-seq tracked gastric chief-cell mRNA changes during injury-induced metaplasia•Three distinct stages of chief-cell metaplastic reprogramming (paligenosis) were seen•Pgc1α controls late-stage paligenotic cell mitochondrial activity and metabolism•PGC1α-NRF2-xCT-GPX4 axis helps paligenotic cells suppress ferroptotic death Miao et al. provide a single-cell transcriptomic atlas of metaplastic regeneration in the stomach (paligenosis), identifying transcriptional signatures of three distinct stages. Paligenotic cells must control mitochondrial activity in response to ROS using a PGC1α-xCT-GPX4 axis, and failed ROS scavenging blocks paligenosis and promotes cell death by ferroptosis.</description><subject>Acinar Cells - metabolism</subject><subject>Amino Acid Transport System y+ - genetics</subject><subject>Amino Acid Transport System y+ - metabolism</subject><subject>Animals</subject><subject>cerulein</subject><subject>Chief Cells, Gastric - metabolism</subject><subject>DMP777</subject><subject>ferroptosis</subject><subject>Ferroptosis - physiology</subject><subject>gastric metaplasia</subject><subject>Gastric Mucosa - metabolism</subject><subject>high-dose tamoxifen</subject><subject>Intercellular Signaling Peptides and Proteins</subject><subject>metabolic reprogramming</subject><subject>Metaplasia - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>NF-E2-Related Factor 2 - genetics</subject><subject>NF-E2-Related Factor 2 - metabolism</subject><subject>paligenosis</subject><subject>pancreatic acinar-ductal metaplasia</subject><subject>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - genetics</subject><subject>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism</subject><subject>Phospholipid Hydroperoxide Glutathione Peroxidase</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Regeneration - physiology</subject><subject>Stomach - pathology</subject><issn>1534-5807</issn><issn>1878-1551</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtLAzEQx4Movr-ByB697Dp5NelFEPEFFS8K3kI2O7Up3UeTtNpvb6Tq0dMMzO8_k_wIOaNQUaCjy3nV4NrhomLARAW8AmA75JBqpUsqJd3NveSilBrUATmKcQ45RjXskwOuJaMg5SF5e8Jkh4WNybsi4Dt2GGzyfVf4rkgzLNp-FbGIqW-tm2ViufIBY2Fza13yayz6z02OFXFA5_NksGn2YTcnZG9qFxFPf-oxeb27fbl5KCfP948315PS8RFLJXJdO6AUGiqo01qPGFVM19JyJccMLVNMWDZVYzm2qoZGKtGIWjUg2Eii5sfkYrt3CP1yhTGZ1sesZWE7zE83bKwEQF7CMyq2qAt9jAGnZgi-tWFjKJhvp2Zutk7Nt1MD3GSnOXb-c2FVt9j8hX4lZuBqC2D-59pjMDGb6Bw2WZVLpun9_xe-AAPEiY8</recordid><startdate>20240506</startdate><enddate>20240506</enddate><creator>Miao, Zhi-Feng</creator><creator>Sun, Jing-Xu</creator><creator>Huang, Xuan-Zhang</creator><creator>Bai, Shi</creator><creator>Pang, Min-Jiao</creator><creator>Li, Jia-Yi</creator><creator>Chen, Han-Yu</creator><creator>Tong, Qi-Yue</creator><creator>Ye, Shi-Yu</creator><creator>Wang, Xin-Yu</creator><creator>Hu, Xiao-Hai</creator><creator>Li, Jing-Ying</creator><creator>Zou, Jin-Wei</creator><creator>Xu, Wen</creator><creator>Yang, Jun-hao</creator><creator>Lu, Xi</creator><creator>Mills, Jason C.</creator><creator>Wang, Zhen-Ning</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20240506</creationdate><title>Metaplastic regeneration in the mouse stomach requires a reactive oxygen species pathway</title><author>Miao, Zhi-Feng ; Sun, Jing-Xu ; Huang, Xuan-Zhang ; Bai, Shi ; Pang, Min-Jiao ; Li, Jia-Yi ; Chen, Han-Yu ; Tong, Qi-Yue ; Ye, Shi-Yu ; Wang, Xin-Yu ; Hu, Xiao-Hai ; Li, Jing-Ying ; Zou, Jin-Wei ; Xu, Wen ; Yang, Jun-hao ; Lu, Xi ; Mills, Jason C. ; Wang, Zhen-Ning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-e38bc0110d141c888621728b5a37592ea2724a2f7959a7b0d574d4b7d04265e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acinar Cells - metabolism</topic><topic>Amino Acid Transport System y+ - genetics</topic><topic>Amino Acid Transport System y+ - metabolism</topic><topic>Animals</topic><topic>cerulein</topic><topic>Chief Cells, Gastric - metabolism</topic><topic>DMP777</topic><topic>ferroptosis</topic><topic>Ferroptosis - physiology</topic><topic>gastric metaplasia</topic><topic>Gastric Mucosa - metabolism</topic><topic>high-dose tamoxifen</topic><topic>Intercellular Signaling Peptides and Proteins</topic><topic>metabolic reprogramming</topic><topic>Metaplasia - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>NF-E2-Related Factor 2 - genetics</topic><topic>NF-E2-Related Factor 2 - metabolism</topic><topic>paligenosis</topic><topic>pancreatic acinar-ductal metaplasia</topic><topic>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - genetics</topic><topic>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism</topic><topic>Phospholipid Hydroperoxide Glutathione Peroxidase</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Regeneration - physiology</topic><topic>Stomach - pathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miao, Zhi-Feng</creatorcontrib><creatorcontrib>Sun, Jing-Xu</creatorcontrib><creatorcontrib>Huang, Xuan-Zhang</creatorcontrib><creatorcontrib>Bai, Shi</creatorcontrib><creatorcontrib>Pang, Min-Jiao</creatorcontrib><creatorcontrib>Li, Jia-Yi</creatorcontrib><creatorcontrib>Chen, Han-Yu</creatorcontrib><creatorcontrib>Tong, Qi-Yue</creatorcontrib><creatorcontrib>Ye, Shi-Yu</creatorcontrib><creatorcontrib>Wang, Xin-Yu</creatorcontrib><creatorcontrib>Hu, Xiao-Hai</creatorcontrib><creatorcontrib>Li, Jing-Ying</creatorcontrib><creatorcontrib>Zou, Jin-Wei</creatorcontrib><creatorcontrib>Xu, Wen</creatorcontrib><creatorcontrib>Yang, Jun-hao</creatorcontrib><creatorcontrib>Lu, Xi</creatorcontrib><creatorcontrib>Mills, Jason C.</creatorcontrib><creatorcontrib>Wang, Zhen-Ning</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Developmental cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miao, Zhi-Feng</au><au>Sun, Jing-Xu</au><au>Huang, Xuan-Zhang</au><au>Bai, Shi</au><au>Pang, Min-Jiao</au><au>Li, Jia-Yi</au><au>Chen, Han-Yu</au><au>Tong, Qi-Yue</au><au>Ye, Shi-Yu</au><au>Wang, Xin-Yu</au><au>Hu, Xiao-Hai</au><au>Li, Jing-Ying</au><au>Zou, Jin-Wei</au><au>Xu, Wen</au><au>Yang, Jun-hao</au><au>Lu, Xi</au><au>Mills, Jason C.</au><au>Wang, Zhen-Ning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metaplastic regeneration in the mouse stomach requires a reactive oxygen species pathway</atitle><jtitle>Developmental cell</jtitle><addtitle>Dev Cell</addtitle><date>2024-05-06</date><risdate>2024</risdate><volume>59</volume><issue>9</issue><spage>1175</spage><epage>1191.e7</epage><pages>1175-1191.e7</pages><issn>1534-5807</issn><eissn>1878-1551</eissn><abstract>In pyloric metaplasia, mature gastric chief cells reprogram via an evolutionarily conserved process termed paligenosis to re-enter the cell cycle and become spasmolytic polypeptide-expressing metaplasia (SPEM) cells. Here, we use single-cell RNA sequencing (scRNA-seq) following injury to the murine stomach to analyze mechanisms governing paligenosis at high resolution. Injury causes induced reactive oxygen species (ROS) with coordinated changes in mitochondrial activity and cellular metabolism, requiring the transcriptional mitochondrial regulator Ppargc1a (Pgc1α) and ROS regulator Nf2el2 (Nrf2). Loss of the ROS and mitochondrial control in Ppargc1a−/− mice causes the death of paligenotic cells through ferroptosis. Blocking the cystine transporter SLC7A11(xCT), which is critical in lipid radical detoxification through glutathione peroxidase 4 (GPX4), also increases ferroptosis. Finally, we show that PGC1α-mediated ROS and mitochondrial changes also underlie the paligenosis of pancreatic acinar cells. Altogether, the results detail how metabolic and mitochondrial changes are necessary for injury response, regeneration, and metaplasia in the stomach. [Display omitted] •scRNA-seq tracked gastric chief-cell mRNA changes during injury-induced metaplasia•Three distinct stages of chief-cell metaplastic reprogramming (paligenosis) were seen•Pgc1α controls late-stage paligenotic cell mitochondrial activity and metabolism•PGC1α-NRF2-xCT-GPX4 axis helps paligenotic cells suppress ferroptotic death Miao et al. provide a single-cell transcriptomic atlas of metaplastic regeneration in the stomach (paligenosis), identifying transcriptional signatures of three distinct stages. Paligenotic cells must control mitochondrial activity in response to ROS using a PGC1α-xCT-GPX4 axis, and failed ROS scavenging blocks paligenosis and promotes cell death by ferroptosis.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>38521055</pmid><doi>10.1016/j.devcel.2024.03.002</doi></addata></record>
fulltext fulltext
identifier ISSN: 1534-5807
ispartof Developmental cell, 2024-05, Vol.59 (9), p.1175-1191.e7
issn 1534-5807
1878-1551
language eng
recordid cdi_proquest_miscellaneous_2974007243
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Acinar Cells - metabolism
Amino Acid Transport System y+ - genetics
Amino Acid Transport System y+ - metabolism
Animals
cerulein
Chief Cells, Gastric - metabolism
DMP777
ferroptosis
Ferroptosis - physiology
gastric metaplasia
Gastric Mucosa - metabolism
high-dose tamoxifen
Intercellular Signaling Peptides and Proteins
metabolic reprogramming
Metaplasia - metabolism
Mice
Mice, Inbred C57BL
Mice, Knockout
mitochondria
Mitochondria - metabolism
NF-E2-Related Factor 2 - genetics
NF-E2-Related Factor 2 - metabolism
paligenosis
pancreatic acinar-ductal metaplasia
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - genetics
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism
Phospholipid Hydroperoxide Glutathione Peroxidase
Reactive Oxygen Species - metabolism
Regeneration - physiology
Stomach - pathology
title Metaplastic regeneration in the mouse stomach requires a reactive oxygen species pathway
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T09%3A27%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metaplastic%20regeneration%20in%20the%20mouse%20stomach%20requires%20a%20reactive%20oxygen%20species%20pathway&rft.jtitle=Developmental%20cell&rft.au=Miao,%20Zhi-Feng&rft.date=2024-05-06&rft.volume=59&rft.issue=9&rft.spage=1175&rft.epage=1191.e7&rft.pages=1175-1191.e7&rft.issn=1534-5807&rft.eissn=1878-1551&rft_id=info:doi/10.1016/j.devcel.2024.03.002&rft_dat=%3Cproquest_cross%3E2974007243%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2974007243&rft_id=info:pmid/38521055&rft_els_id=S1534580724001424&rfr_iscdi=true