Deep-Learning Driven, High-Precision Plasmonic Scattering Interferometry for Single-Particle Identification
Label-free probing of the material composition of (bio)nano-objects directly in solution at the single-particle level is crucial in various fields, including colloid analysis and medical diagnostics. However, it remains challenging to decipher the constituents of heterogeneous mixtures of nano-obje...
Gespeichert in:
Veröffentlicht in: | ACS nano 2024-04, Vol.18 (13), p.9704-9712 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9712 |
---|---|
container_issue | 13 |
container_start_page | 9704 |
container_title | ACS nano |
container_volume | 18 |
creator | He, Yi-Fan Yang, Si-Yu Lv, Wen-Li Qian, Chen Wu, Gang Zhao, Xiaona Liu, Xian-Wei |
description | Label-free probing of the material composition of (bio)nano-objects directly in solution at the single-particle level is crucial in various fields, including colloid analysis and medical diagnostics. However, it remains challenging to decipher the constituents of heterogeneous mixtures of nano-objects with high sensitivity and resolution. Here, we present deep-learning plasmonic scattering interferometric microscopy, which is capable of identifying the composition of nanoparticles automatically with high throughput at the single-particle level. By employing deep learning to decode the quantitative relationship between the interferometric scattering patterns of nanoparticles and their intrinsic material properties, this technique is capable of high-throughput, label-free identification of diverse nanoparticle types. We demonstrate its versatility in analyzing dynamic surface chemical reactions on single nanoparticles, revealing its potential as a universal platform for nanoparticle imaging and reaction analysis. This technique not only streamlines the process of nanoparticle characterization, but also proposes a methodology for a deeper understanding of nanoscale dynamics, holding great potential for addressing extensive fundamental questions in nanoscience and nanotechnology. |
doi_str_mv | 10.1021/acsnano.4c01411 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2974005875</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2974005875</sourcerecordid><originalsourceid>FETCH-LOGICAL-a287t-e6f5eafa37ec5e8c167ef2c18f23df7b11a46f2c98cf63a3b8822aded79c0353</originalsourceid><addsrcrecordid>eNp1kEFPwjAYhhujEUXP3syOJjpY123tjgZUSEgkgYO3pnRfsbi12G4m_HtLQG6e-uXN875JH4TucDLASYqHQnojjB1kMsEZxmfoCpekiBNWfJyf7hz30LX3myTJKaPFJeqRkKW0pFfoawywjWcgnNFmHY2d_gHzFE30-jOeO5Daa2uieS18Y42W0UKKtgW3Z6cmHAqcbaB1u0hZFy1CXkM8F67VsoZoWoFptdKhFGZu0IUStYfb49tHy9eX5WgSz97fpqPnWSxSRtsYCpWDUIJQkDkwiQsKKpWYqZRUiq4wFlkRgpJJVRBBVoylqaigoqVMSE766OEwu3X2uwPf8kZ7CXUtDNjO87SkWVDB6B4dHlDprPcOFN863Qi34zjhe8H8KJgfBYfG_XG8WzVQnfg_owF4PAChyTe2cyZ89d-5X2GNiTc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2974005875</pqid></control><display><type>article</type><title>Deep-Learning Driven, High-Precision Plasmonic Scattering Interferometry for Single-Particle Identification</title><source>ACS Publications</source><creator>He, Yi-Fan ; Yang, Si-Yu ; Lv, Wen-Li ; Qian, Chen ; Wu, Gang ; Zhao, Xiaona ; Liu, Xian-Wei</creator><creatorcontrib>He, Yi-Fan ; Yang, Si-Yu ; Lv, Wen-Li ; Qian, Chen ; Wu, Gang ; Zhao, Xiaona ; Liu, Xian-Wei</creatorcontrib><description>Label-free probing of the material composition of (bio)nano-objects directly in solution at the single-particle level is crucial in various fields, including colloid analysis and medical diagnostics. However, it remains challenging to decipher the constituents of heterogeneous mixtures of nano-objects with high sensitivity and resolution. Here, we present deep-learning plasmonic scattering interferometric microscopy, which is capable of identifying the composition of nanoparticles automatically with high throughput at the single-particle level. By employing deep learning to decode the quantitative relationship between the interferometric scattering patterns of nanoparticles and their intrinsic material properties, this technique is capable of high-throughput, label-free identification of diverse nanoparticle types. We demonstrate its versatility in analyzing dynamic surface chemical reactions on single nanoparticles, revealing its potential as a universal platform for nanoparticle imaging and reaction analysis. This technique not only streamlines the process of nanoparticle characterization, but also proposes a methodology for a deeper understanding of nanoscale dynamics, holding great potential for addressing extensive fundamental questions in nanoscience and nanotechnology.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.4c01411</identifier><identifier>PMID: 38512797</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2024-04, Vol.18 (13), p.9704-9712</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a287t-e6f5eafa37ec5e8c167ef2c18f23df7b11a46f2c98cf63a3b8822aded79c0353</cites><orcidid>0000-0002-0493-8210</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.4c01411$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.4c01411$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38512797$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>He, Yi-Fan</creatorcontrib><creatorcontrib>Yang, Si-Yu</creatorcontrib><creatorcontrib>Lv, Wen-Li</creatorcontrib><creatorcontrib>Qian, Chen</creatorcontrib><creatorcontrib>Wu, Gang</creatorcontrib><creatorcontrib>Zhao, Xiaona</creatorcontrib><creatorcontrib>Liu, Xian-Wei</creatorcontrib><title>Deep-Learning Driven, High-Precision Plasmonic Scattering Interferometry for Single-Particle Identification</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Label-free probing of the material composition of (bio)nano-objects directly in solution at the single-particle level is crucial in various fields, including colloid analysis and medical diagnostics. However, it remains challenging to decipher the constituents of heterogeneous mixtures of nano-objects with high sensitivity and resolution. Here, we present deep-learning plasmonic scattering interferometric microscopy, which is capable of identifying the composition of nanoparticles automatically with high throughput at the single-particle level. By employing deep learning to decode the quantitative relationship between the interferometric scattering patterns of nanoparticles and their intrinsic material properties, this technique is capable of high-throughput, label-free identification of diverse nanoparticle types. We demonstrate its versatility in analyzing dynamic surface chemical reactions on single nanoparticles, revealing its potential as a universal platform for nanoparticle imaging and reaction analysis. This technique not only streamlines the process of nanoparticle characterization, but also proposes a methodology for a deeper understanding of nanoscale dynamics, holding great potential for addressing extensive fundamental questions in nanoscience and nanotechnology.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kEFPwjAYhhujEUXP3syOJjpY123tjgZUSEgkgYO3pnRfsbi12G4m_HtLQG6e-uXN875JH4TucDLASYqHQnojjB1kMsEZxmfoCpekiBNWfJyf7hz30LX3myTJKaPFJeqRkKW0pFfoawywjWcgnNFmHY2d_gHzFE30-jOeO5Daa2uieS18Y42W0UKKtgW3Z6cmHAqcbaB1u0hZFy1CXkM8F67VsoZoWoFptdKhFGZu0IUStYfb49tHy9eX5WgSz97fpqPnWSxSRtsYCpWDUIJQkDkwiQsKKpWYqZRUiq4wFlkRgpJJVRBBVoylqaigoqVMSE766OEwu3X2uwPf8kZ7CXUtDNjO87SkWVDB6B4dHlDprPcOFN863Qi34zjhe8H8KJgfBYfG_XG8WzVQnfg_owF4PAChyTe2cyZ89d-5X2GNiTc</recordid><startdate>20240402</startdate><enddate>20240402</enddate><creator>He, Yi-Fan</creator><creator>Yang, Si-Yu</creator><creator>Lv, Wen-Li</creator><creator>Qian, Chen</creator><creator>Wu, Gang</creator><creator>Zhao, Xiaona</creator><creator>Liu, Xian-Wei</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0493-8210</orcidid></search><sort><creationdate>20240402</creationdate><title>Deep-Learning Driven, High-Precision Plasmonic Scattering Interferometry for Single-Particle Identification</title><author>He, Yi-Fan ; Yang, Si-Yu ; Lv, Wen-Li ; Qian, Chen ; Wu, Gang ; Zhao, Xiaona ; Liu, Xian-Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a287t-e6f5eafa37ec5e8c167ef2c18f23df7b11a46f2c98cf63a3b8822aded79c0353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Yi-Fan</creatorcontrib><creatorcontrib>Yang, Si-Yu</creatorcontrib><creatorcontrib>Lv, Wen-Li</creatorcontrib><creatorcontrib>Qian, Chen</creatorcontrib><creatorcontrib>Wu, Gang</creatorcontrib><creatorcontrib>Zhao, Xiaona</creatorcontrib><creatorcontrib>Liu, Xian-Wei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Yi-Fan</au><au>Yang, Si-Yu</au><au>Lv, Wen-Li</au><au>Qian, Chen</au><au>Wu, Gang</au><au>Zhao, Xiaona</au><au>Liu, Xian-Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep-Learning Driven, High-Precision Plasmonic Scattering Interferometry for Single-Particle Identification</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2024-04-02</date><risdate>2024</risdate><volume>18</volume><issue>13</issue><spage>9704</spage><epage>9712</epage><pages>9704-9712</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Label-free probing of the material composition of (bio)nano-objects directly in solution at the single-particle level is crucial in various fields, including colloid analysis and medical diagnostics. However, it remains challenging to decipher the constituents of heterogeneous mixtures of nano-objects with high sensitivity and resolution. Here, we present deep-learning plasmonic scattering interferometric microscopy, which is capable of identifying the composition of nanoparticles automatically with high throughput at the single-particle level. By employing deep learning to decode the quantitative relationship between the interferometric scattering patterns of nanoparticles and their intrinsic material properties, this technique is capable of high-throughput, label-free identification of diverse nanoparticle types. We demonstrate its versatility in analyzing dynamic surface chemical reactions on single nanoparticles, revealing its potential as a universal platform for nanoparticle imaging and reaction analysis. This technique not only streamlines the process of nanoparticle characterization, but also proposes a methodology for a deeper understanding of nanoscale dynamics, holding great potential for addressing extensive fundamental questions in nanoscience and nanotechnology.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38512797</pmid><doi>10.1021/acsnano.4c01411</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0493-8210</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2024-04, Vol.18 (13), p.9704-9712 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_2974005875 |
source | ACS Publications |
title | Deep-Learning Driven, High-Precision Plasmonic Scattering Interferometry for Single-Particle Identification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A51%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep-Learning%20Driven,%20High-Precision%20Plasmonic%20Scattering%20Interferometry%20for%20Single-Particle%20Identification&rft.jtitle=ACS%20nano&rft.au=He,%20Yi-Fan&rft.date=2024-04-02&rft.volume=18&rft.issue=13&rft.spage=9704&rft.epage=9712&rft.pages=9704-9712&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.4c01411&rft_dat=%3Cproquest_cross%3E2974005875%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2974005875&rft_id=info:pmid/38512797&rfr_iscdi=true |