Bioinspired 1T-MoS2-based aerogel beads for efficient freshwater harvesting in harsh environments

Inspired by the back of Namib Desert beetle, 1T-MoS2-based aerogel beads enabled harvest water from atmospheric humidity and sustainable freshwater generation from soil, which could alleviate the water shortage in harsh environments. [Display omitted] Freshwater scarcity is one of the most critical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2024-06, Vol.664, p.1021-1030
Hauptverfasser: Yu, Fang, Cheng, Xiangyu, Yang, Li, Zhu, Zhenwei, Chen, Zihe, Zhang, Liu, Wang, Xianbao, Zhang, Qinfang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1030
container_issue
container_start_page 1021
container_title Journal of colloid and interface science
container_volume 664
creator Yu, Fang
Cheng, Xiangyu
Yang, Li
Zhu, Zhenwei
Chen, Zihe
Zhang, Liu
Wang, Xianbao
Zhang, Qinfang
description Inspired by the back of Namib Desert beetle, 1T-MoS2-based aerogel beads enabled harvest water from atmospheric humidity and sustainable freshwater generation from soil, which could alleviate the water shortage in harsh environments. [Display omitted] Freshwater scarcity is one of the most critical issues worldwide, particularly in arid regions, stemming from population growth and climate change. Inspired by the hydrophilic bump structures of desert beetles, 1T-MoS2-based aerogel beads with porous structures and CaCl2-crystal loading (termed as MoAB-m@CaCl2-n) were prepared for freshwater harvesting. Metallic-phase MoS2 nanospheres exhibit excellent photothermal conversion abilities, facilitating solar-driven water desorption and evaporation. Owing to the synergistic effect of its localized surface features, hydrophilic groups, and dispersive CaCl2 particles, MoAB-2@CaCl2-2 efficiently harvests water from atmosphere with a superior moisture adsorption capacity (0.18–0.82 g g−1) at a wide range of relative humidity (10 %-70 %). Under one-sun illumination, MoAB-2@CaCl2-2 demonstrates an outstanding solar-driven water evaporation rate of 2.25 kg m-2h−1. The water evaporation rate from soil (water content = 20 %) is 1.19 kg m-2h−1, which is sufficient for sustainable freshwater generation from the soil in arid regions. More importantly, the multifunctional MoAB-2@CaCl2-2-based homemade freshwater generation prototype delivers a certain amount of water harvesting (0.99 g g−1 day−1) on a rainy day and provides an impressive daily freshwater yield (53.7 kg m−2) under natural sunlight. The integrated device exhibits excellent efficiency and practicality and offers a feasible method for freshwater harvesting in harsh environments.
doi_str_mv 10.1016/j.jcis.2024.03.098
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2974005842</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979724005873</els_id><sourcerecordid>2974005842</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-be452887cfe1bd28b3ca34de5518e37f9695ffebb971529bd80920c14dd2ca8b3</originalsourceid><addsrcrecordid>eNqFkLFu2zAQhomgBeK6fYFOGrNIOZKiKQJZGiNJA7joUGcmKPJoU7BFl1Rc9O1DwZ3T6fAD33-4-wj5SqGhQFe3QzPYkBsGrG2AN6C6K7KgoEQtKfAPZAHAaK2kktfkU84DAKVCqAUx9yGGMZ9CQlfRbf0j_mJ1b3JJBlPc4aHq0bhc-Zgq9D7YgONU-YR5_8dMmKq9SWfMUxh3VRjnlPcVjueQ4ngsaP5MPnpzyPjl31ySl8eH7fp7vfn59Lz-tqktp3Kqe2wF6zppPdLesa7n1vDWoRC0Qy69WinhPfa9klQw1bsOFANLW-eYNQVfkpvL3lOKv1_LRfoYssXDwYwYX7PmVHDZiRVv_4syJVsA0bWsoOyC2hRzTuj1KYWjSX81BT2r14Oe1etZvQaui_pSuruUsPx7Dph0nrVZdEWznbSL4b36GweNjec</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2974005842</pqid></control><display><type>article</type><title>Bioinspired 1T-MoS2-based aerogel beads for efficient freshwater harvesting in harsh environments</title><source>Elsevier ScienceDirect Journals</source><creator>Yu, Fang ; Cheng, Xiangyu ; Yang, Li ; Zhu, Zhenwei ; Chen, Zihe ; Zhang, Liu ; Wang, Xianbao ; Zhang, Qinfang</creator><creatorcontrib>Yu, Fang ; Cheng, Xiangyu ; Yang, Li ; Zhu, Zhenwei ; Chen, Zihe ; Zhang, Liu ; Wang, Xianbao ; Zhang, Qinfang</creatorcontrib><description>Inspired by the back of Namib Desert beetle, 1T-MoS2-based aerogel beads enabled harvest water from atmospheric humidity and sustainable freshwater generation from soil, which could alleviate the water shortage in harsh environments. [Display omitted] Freshwater scarcity is one of the most critical issues worldwide, particularly in arid regions, stemming from population growth and climate change. Inspired by the hydrophilic bump structures of desert beetles, 1T-MoS2-based aerogel beads with porous structures and CaCl2-crystal loading (termed as MoAB-m@CaCl2-n) were prepared for freshwater harvesting. Metallic-phase MoS2 nanospheres exhibit excellent photothermal conversion abilities, facilitating solar-driven water desorption and evaporation. Owing to the synergistic effect of its localized surface features, hydrophilic groups, and dispersive CaCl2 particles, MoAB-2@CaCl2-2 efficiently harvests water from atmosphere with a superior moisture adsorption capacity (0.18–0.82 g g−1) at a wide range of relative humidity (10 %-70 %). Under one-sun illumination, MoAB-2@CaCl2-2 demonstrates an outstanding solar-driven water evaporation rate of 2.25 kg m-2h−1. The water evaporation rate from soil (water content = 20 %) is 1.19 kg m-2h−1, which is sufficient for sustainable freshwater generation from the soil in arid regions. More importantly, the multifunctional MoAB-2@CaCl2-2-based homemade freshwater generation prototype delivers a certain amount of water harvesting (0.99 g g−1 day−1) on a rainy day and provides an impressive daily freshwater yield (53.7 kg m−2) under natural sunlight. The integrated device exhibits excellent efficiency and practicality and offers a feasible method for freshwater harvesting in harsh environments.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2024.03.098</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>adsorption ; aerogels ; Atmospheric water adsorption ; climate change ; desorption ; evaporation rate ; freshwater ; hydrophilicity ; lighting ; Molybdenum disulfide ; nanospheres ; population growth ; prototypes ; relative humidity ; soil ; Soil Freshwater generation ; Solar evaporation ; solar radiation ; synergism ; water content</subject><ispartof>Journal of colloid and interface science, 2024-06, Vol.664, p.1021-1030</ispartof><rights>2024 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c317t-be452887cfe1bd28b3ca34de5518e37f9695ffebb971529bd80920c14dd2ca8b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021979724005873$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Yu, Fang</creatorcontrib><creatorcontrib>Cheng, Xiangyu</creatorcontrib><creatorcontrib>Yang, Li</creatorcontrib><creatorcontrib>Zhu, Zhenwei</creatorcontrib><creatorcontrib>Chen, Zihe</creatorcontrib><creatorcontrib>Zhang, Liu</creatorcontrib><creatorcontrib>Wang, Xianbao</creatorcontrib><creatorcontrib>Zhang, Qinfang</creatorcontrib><title>Bioinspired 1T-MoS2-based aerogel beads for efficient freshwater harvesting in harsh environments</title><title>Journal of colloid and interface science</title><description>Inspired by the back of Namib Desert beetle, 1T-MoS2-based aerogel beads enabled harvest water from atmospheric humidity and sustainable freshwater generation from soil, which could alleviate the water shortage in harsh environments. [Display omitted] Freshwater scarcity is one of the most critical issues worldwide, particularly in arid regions, stemming from population growth and climate change. Inspired by the hydrophilic bump structures of desert beetles, 1T-MoS2-based aerogel beads with porous structures and CaCl2-crystal loading (termed as MoAB-m@CaCl2-n) were prepared for freshwater harvesting. Metallic-phase MoS2 nanospheres exhibit excellent photothermal conversion abilities, facilitating solar-driven water desorption and evaporation. Owing to the synergistic effect of its localized surface features, hydrophilic groups, and dispersive CaCl2 particles, MoAB-2@CaCl2-2 efficiently harvests water from atmosphere with a superior moisture adsorption capacity (0.18–0.82 g g−1) at a wide range of relative humidity (10 %-70 %). Under one-sun illumination, MoAB-2@CaCl2-2 demonstrates an outstanding solar-driven water evaporation rate of 2.25 kg m-2h−1. The water evaporation rate from soil (water content = 20 %) is 1.19 kg m-2h−1, which is sufficient for sustainable freshwater generation from the soil in arid regions. More importantly, the multifunctional MoAB-2@CaCl2-2-based homemade freshwater generation prototype delivers a certain amount of water harvesting (0.99 g g−1 day−1) on a rainy day and provides an impressive daily freshwater yield (53.7 kg m−2) under natural sunlight. The integrated device exhibits excellent efficiency and practicality and offers a feasible method for freshwater harvesting in harsh environments.</description><subject>adsorption</subject><subject>aerogels</subject><subject>Atmospheric water adsorption</subject><subject>climate change</subject><subject>desorption</subject><subject>evaporation rate</subject><subject>freshwater</subject><subject>hydrophilicity</subject><subject>lighting</subject><subject>Molybdenum disulfide</subject><subject>nanospheres</subject><subject>population growth</subject><subject>prototypes</subject><subject>relative humidity</subject><subject>soil</subject><subject>Soil Freshwater generation</subject><subject>Solar evaporation</subject><subject>solar radiation</subject><subject>synergism</subject><subject>water content</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkLFu2zAQhomgBeK6fYFOGrNIOZKiKQJZGiNJA7joUGcmKPJoU7BFl1Rc9O1DwZ3T6fAD33-4-wj5SqGhQFe3QzPYkBsGrG2AN6C6K7KgoEQtKfAPZAHAaK2kktfkU84DAKVCqAUx9yGGMZ9CQlfRbf0j_mJ1b3JJBlPc4aHq0bhc-Zgq9D7YgONU-YR5_8dMmKq9SWfMUxh3VRjnlPcVjueQ4ngsaP5MPnpzyPjl31ySl8eH7fp7vfn59Lz-tqktp3Kqe2wF6zppPdLesa7n1vDWoRC0Qy69WinhPfa9klQw1bsOFANLW-eYNQVfkpvL3lOKv1_LRfoYssXDwYwYX7PmVHDZiRVv_4syJVsA0bWsoOyC2hRzTuj1KYWjSX81BT2r14Oe1etZvQaui_pSuruUsPx7Dph0nrVZdEWznbSL4b36GweNjec</recordid><startdate>20240615</startdate><enddate>20240615</enddate><creator>Yu, Fang</creator><creator>Cheng, Xiangyu</creator><creator>Yang, Li</creator><creator>Zhu, Zhenwei</creator><creator>Chen, Zihe</creator><creator>Zhang, Liu</creator><creator>Wang, Xianbao</creator><creator>Zhang, Qinfang</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20240615</creationdate><title>Bioinspired 1T-MoS2-based aerogel beads for efficient freshwater harvesting in harsh environments</title><author>Yu, Fang ; Cheng, Xiangyu ; Yang, Li ; Zhu, Zhenwei ; Chen, Zihe ; Zhang, Liu ; Wang, Xianbao ; Zhang, Qinfang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-be452887cfe1bd28b3ca34de5518e37f9695ffebb971529bd80920c14dd2ca8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>adsorption</topic><topic>aerogels</topic><topic>Atmospheric water adsorption</topic><topic>climate change</topic><topic>desorption</topic><topic>evaporation rate</topic><topic>freshwater</topic><topic>hydrophilicity</topic><topic>lighting</topic><topic>Molybdenum disulfide</topic><topic>nanospheres</topic><topic>population growth</topic><topic>prototypes</topic><topic>relative humidity</topic><topic>soil</topic><topic>Soil Freshwater generation</topic><topic>Solar evaporation</topic><topic>solar radiation</topic><topic>synergism</topic><topic>water content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Fang</creatorcontrib><creatorcontrib>Cheng, Xiangyu</creatorcontrib><creatorcontrib>Yang, Li</creatorcontrib><creatorcontrib>Zhu, Zhenwei</creatorcontrib><creatorcontrib>Chen, Zihe</creatorcontrib><creatorcontrib>Zhang, Liu</creatorcontrib><creatorcontrib>Wang, Xianbao</creatorcontrib><creatorcontrib>Zhang, Qinfang</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Fang</au><au>Cheng, Xiangyu</au><au>Yang, Li</au><au>Zhu, Zhenwei</au><au>Chen, Zihe</au><au>Zhang, Liu</au><au>Wang, Xianbao</au><au>Zhang, Qinfang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioinspired 1T-MoS2-based aerogel beads for efficient freshwater harvesting in harsh environments</atitle><jtitle>Journal of colloid and interface science</jtitle><date>2024-06-15</date><risdate>2024</risdate><volume>664</volume><spage>1021</spage><epage>1030</epage><pages>1021-1030</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><abstract>Inspired by the back of Namib Desert beetle, 1T-MoS2-based aerogel beads enabled harvest water from atmospheric humidity and sustainable freshwater generation from soil, which could alleviate the water shortage in harsh environments. [Display omitted] Freshwater scarcity is one of the most critical issues worldwide, particularly in arid regions, stemming from population growth and climate change. Inspired by the hydrophilic bump structures of desert beetles, 1T-MoS2-based aerogel beads with porous structures and CaCl2-crystal loading (termed as MoAB-m@CaCl2-n) were prepared for freshwater harvesting. Metallic-phase MoS2 nanospheres exhibit excellent photothermal conversion abilities, facilitating solar-driven water desorption and evaporation. Owing to the synergistic effect of its localized surface features, hydrophilic groups, and dispersive CaCl2 particles, MoAB-2@CaCl2-2 efficiently harvests water from atmosphere with a superior moisture adsorption capacity (0.18–0.82 g g−1) at a wide range of relative humidity (10 %-70 %). Under one-sun illumination, MoAB-2@CaCl2-2 demonstrates an outstanding solar-driven water evaporation rate of 2.25 kg m-2h−1. The water evaporation rate from soil (water content = 20 %) is 1.19 kg m-2h−1, which is sufficient for sustainable freshwater generation from the soil in arid regions. More importantly, the multifunctional MoAB-2@CaCl2-2-based homemade freshwater generation prototype delivers a certain amount of water harvesting (0.99 g g−1 day−1) on a rainy day and provides an impressive daily freshwater yield (53.7 kg m−2) under natural sunlight. The integrated device exhibits excellent efficiency and practicality and offers a feasible method for freshwater harvesting in harsh environments.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcis.2024.03.098</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9797
ispartof Journal of colloid and interface science, 2024-06, Vol.664, p.1021-1030
issn 0021-9797
1095-7103
language eng
recordid cdi_proquest_miscellaneous_2974005842
source Elsevier ScienceDirect Journals
subjects adsorption
aerogels
Atmospheric water adsorption
climate change
desorption
evaporation rate
freshwater
hydrophilicity
lighting
Molybdenum disulfide
nanospheres
population growth
prototypes
relative humidity
soil
Soil Freshwater generation
Solar evaporation
solar radiation
synergism
water content
title Bioinspired 1T-MoS2-based aerogel beads for efficient freshwater harvesting in harsh environments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T16%3A04%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioinspired%201T-MoS2-based%20aerogel%20beads%20for%20efficient%20freshwater%20harvesting%20in%20harsh%20environments&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Yu,%20Fang&rft.date=2024-06-15&rft.volume=664&rft.spage=1021&rft.epage=1030&rft.pages=1021-1030&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2024.03.098&rft_dat=%3Cproquest_cross%3E2974005842%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2974005842&rft_id=info:pmid/&rft_els_id=S0021979724005873&rfr_iscdi=true