Co‐opted cytosolic proteins form condensate substructures within membranous replication organelles of a positive‐strand RNA virus

Summary Positive‐strand RNA viruses co‐opt organellar membranes for biogenesis of viral replication organelles (VROs). Tombusviruses also co‐opt pro‐viral cytosolic proteins to VROs. It is currently not known what type of molecular organization keeps co‐opted proteins sequestered within membranous V...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist 2024-09, Vol.243 (5), p.1917-1935
Hauptverfasser: Lin, Wenwu, Nagy, Peter D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1935
container_issue 5
container_start_page 1917
container_title The New phytologist
container_volume 243
creator Lin, Wenwu
Nagy, Peter D.
description Summary Positive‐strand RNA viruses co‐opt organellar membranes for biogenesis of viral replication organelles (VROs). Tombusviruses also co‐opt pro‐viral cytosolic proteins to VROs. It is currently not known what type of molecular organization keeps co‐opted proteins sequestered within membranous VROs. In this study, we employed tomato bushy stunt virus (TBSV) and carnation Italian ringspot virus (CIRV) – Nicotiana benthamiana pathosystems to identify biomolecular condensate formation in VROs. We show that TBSV p33 and the CIRV p36 replication proteins sequester glycolytic and fermentation enzymes in unique condensate substructures associated with membranous VROs. We find that p33 and p36 form droplets in vitro driven by intrinsically disordered region. The replication protein organizes partitioning of co‐opted host proteins into droplets. VRO‐associated condensates are critical for local adenosine triphosphate production to support energy for virus replication. We find that co‐opted endoplasmic reticulum membranes and actin filaments form meshworks within and around VRO condensates, contributing to unique composition and structure. We propose that p33/p36 organize liquid–liquid phase separation of co‐opted concentrated host proteins in condensate substructures within membranous VROs. Overall, we demonstrate that subverted membranes and condensate substructures co‐exist and are critical for VRO functions. The replication proteins induce and connect the two substructures within VROs. See also the Commentary on this article by May, 243: 1636–1638.
doi_str_mv 10.1111/nph.19691
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2974001596</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2974001596</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3531-94d2bb086ef34c1311a06a641c0483db20ff27de1146ed1ce4239d364ed00b3b3</originalsourceid><addsrcrecordid>eNp1kcFOHSEUhomp0VvrwhdoSLppF6MwMNxhaW5aNTHWmDbpjjBwpmJmYARGc3fduO8z9klEr-3CpGzO5js_H_wIHVBySMs58tP1IZVC0i20oFzIqqVs-QYtCKnbSnDxYxe9TemGECIbUe-gXdY2tKnFcoEeVuHPr99hymCxWeeQwuAMnmLI4HzCfYgjNsFb8ElnwGnuUo6zyXOEhO9dvnYejzB2UfswJxxhKvs6u-BxiD-1h2EoYOixxlNILrs7KPeVDO0tvro4xncuzukd2u71kGD_Ze6h718-f1udVudfT85Wx-eVYQ2jleS27jrSCugZN5RRqonQglNDeMtsV5O-r5cWaPkEsNQAr5m0THCwhHSsY3vo4ya3PPB2hpTV6JIpjkW06KtaLjkhtJGioB9eoTdhjr7YKVYMeCMZfaI-bSgTQ0oRejVFN-q4VpSop25U6UY9d1PY9y-JczeC_Uf-LaMARxvg3g2w_n-Surg83UQ-AlLsnTI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3086459316</pqid></control><display><type>article</type><title>Co‐opted cytosolic proteins form condensate substructures within membranous replication organelles of a positive‐strand RNA virus</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Lin, Wenwu ; Nagy, Peter D.</creator><creatorcontrib>Lin, Wenwu ; Nagy, Peter D.</creatorcontrib><description>Summary Positive‐strand RNA viruses co‐opt organellar membranes for biogenesis of viral replication organelles (VROs). Tombusviruses also co‐opt pro‐viral cytosolic proteins to VROs. It is currently not known what type of molecular organization keeps co‐opted proteins sequestered within membranous VROs. In this study, we employed tomato bushy stunt virus (TBSV) and carnation Italian ringspot virus (CIRV) – Nicotiana benthamiana pathosystems to identify biomolecular condensate formation in VROs. We show that TBSV p33 and the CIRV p36 replication proteins sequester glycolytic and fermentation enzymes in unique condensate substructures associated with membranous VROs. We find that p33 and p36 form droplets in vitro driven by intrinsically disordered region. The replication protein organizes partitioning of co‐opted host proteins into droplets. VRO‐associated condensates are critical for local adenosine triphosphate production to support energy for virus replication. We find that co‐opted endoplasmic reticulum membranes and actin filaments form meshworks within and around VRO condensates, contributing to unique composition and structure. We propose that p33/p36 organize liquid–liquid phase separation of co‐opted concentrated host proteins in condensate substructures within membranous VROs. Overall, we demonstrate that subverted membranes and condensate substructures co‐exist and are critical for VRO functions. The replication proteins induce and connect the two substructures within VROs. See also the Commentary on this article by May, 243: 1636–1638.</description><identifier>ISSN: 0028-646X</identifier><identifier>ISSN: 1469-8137</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.19691</identifier><identifier>PMID: 38515267</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Actin ; Actin Cytoskeleton - metabolism ; Adenosine triphosphate ; ATP ; Biogenesis ; biomolecular condensate ; Biomolecular Condensates - metabolism ; Bushy stunt ; Carmovirus - metabolism ; Carmovirus - physiology ; Condensates ; Cytosol - metabolism ; Cytosol - virology ; Droplets ; Endoplasmic reticulum ; Endoplasmic Reticulum - metabolism ; Fermentation ; Filaments ; Glycolysis ; Intracellular Membranes - metabolism ; Intracellular Membranes - virology ; Liquid phases ; Membranes ; Nicotiana - virology ; Organelles ; Organelles - metabolism ; Organelles - virology ; Phase separation ; plant RNA virus ; Plant viruses ; Proteins ; Replication ; RNA viruses ; Tomatoes ; Tombusvirus - physiology ; Viral Proteins - metabolism ; Viral replication ; Virus Replication ; Viruses ; virus–host interaction</subject><ispartof>The New phytologist, 2024-09, Vol.243 (5), p.1917-1935</ispartof><rights>2024 The Author(s). © 2024 New Phytologist Foundation.</rights><rights>2024 The Author(s). New Phytologist © 2024 New Phytologist Foundation.</rights><rights>Copyright © 2024 New Phytologist Trust</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3531-94d2bb086ef34c1311a06a641c0483db20ff27de1146ed1ce4239d364ed00b3b3</citedby><cites>FETCH-LOGICAL-c3531-94d2bb086ef34c1311a06a641c0483db20ff27de1146ed1ce4239d364ed00b3b3</cites><orcidid>0000-0003-4164-1237</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fnph.19691$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fnph.19691$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38515267$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Wenwu</creatorcontrib><creatorcontrib>Nagy, Peter D.</creatorcontrib><title>Co‐opted cytosolic proteins form condensate substructures within membranous replication organelles of a positive‐strand RNA virus</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Summary Positive‐strand RNA viruses co‐opt organellar membranes for biogenesis of viral replication organelles (VROs). Tombusviruses also co‐opt pro‐viral cytosolic proteins to VROs. It is currently not known what type of molecular organization keeps co‐opted proteins sequestered within membranous VROs. In this study, we employed tomato bushy stunt virus (TBSV) and carnation Italian ringspot virus (CIRV) – Nicotiana benthamiana pathosystems to identify biomolecular condensate formation in VROs. We show that TBSV p33 and the CIRV p36 replication proteins sequester glycolytic and fermentation enzymes in unique condensate substructures associated with membranous VROs. We find that p33 and p36 form droplets in vitro driven by intrinsically disordered region. The replication protein organizes partitioning of co‐opted host proteins into droplets. VRO‐associated condensates are critical for local adenosine triphosphate production to support energy for virus replication. We find that co‐opted endoplasmic reticulum membranes and actin filaments form meshworks within and around VRO condensates, contributing to unique composition and structure. We propose that p33/p36 organize liquid–liquid phase separation of co‐opted concentrated host proteins in condensate substructures within membranous VROs. Overall, we demonstrate that subverted membranes and condensate substructures co‐exist and are critical for VRO functions. The replication proteins induce and connect the two substructures within VROs. See also the Commentary on this article by May, 243: 1636–1638.</description><subject>Actin</subject><subject>Actin Cytoskeleton - metabolism</subject><subject>Adenosine triphosphate</subject><subject>ATP</subject><subject>Biogenesis</subject><subject>biomolecular condensate</subject><subject>Biomolecular Condensates - metabolism</subject><subject>Bushy stunt</subject><subject>Carmovirus - metabolism</subject><subject>Carmovirus - physiology</subject><subject>Condensates</subject><subject>Cytosol - metabolism</subject><subject>Cytosol - virology</subject><subject>Droplets</subject><subject>Endoplasmic reticulum</subject><subject>Endoplasmic Reticulum - metabolism</subject><subject>Fermentation</subject><subject>Filaments</subject><subject>Glycolysis</subject><subject>Intracellular Membranes - metabolism</subject><subject>Intracellular Membranes - virology</subject><subject>Liquid phases</subject><subject>Membranes</subject><subject>Nicotiana - virology</subject><subject>Organelles</subject><subject>Organelles - metabolism</subject><subject>Organelles - virology</subject><subject>Phase separation</subject><subject>plant RNA virus</subject><subject>Plant viruses</subject><subject>Proteins</subject><subject>Replication</subject><subject>RNA viruses</subject><subject>Tomatoes</subject><subject>Tombusvirus - physiology</subject><subject>Viral Proteins - metabolism</subject><subject>Viral replication</subject><subject>Virus Replication</subject><subject>Viruses</subject><subject>virus–host interaction</subject><issn>0028-646X</issn><issn>1469-8137</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kcFOHSEUhomp0VvrwhdoSLppF6MwMNxhaW5aNTHWmDbpjjBwpmJmYARGc3fduO8z9klEr-3CpGzO5js_H_wIHVBySMs58tP1IZVC0i20oFzIqqVs-QYtCKnbSnDxYxe9TemGECIbUe-gXdY2tKnFcoEeVuHPr99hymCxWeeQwuAMnmLI4HzCfYgjNsFb8ElnwGnuUo6zyXOEhO9dvnYejzB2UfswJxxhKvs6u-BxiD-1h2EoYOixxlNILrs7KPeVDO0tvro4xncuzukd2u71kGD_Ze6h718-f1udVudfT85Wx-eVYQ2jleS27jrSCugZN5RRqonQglNDeMtsV5O-r5cWaPkEsNQAr5m0THCwhHSsY3vo4ya3PPB2hpTV6JIpjkW06KtaLjkhtJGioB9eoTdhjr7YKVYMeCMZfaI-bSgTQ0oRejVFN-q4VpSop25U6UY9d1PY9y-JczeC_Uf-LaMARxvg3g2w_n-Surg83UQ-AlLsnTI</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Lin, Wenwu</creator><creator>Nagy, Peter D.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4164-1237</orcidid></search><sort><creationdate>202409</creationdate><title>Co‐opted cytosolic proteins form condensate substructures within membranous replication organelles of a positive‐strand RNA virus</title><author>Lin, Wenwu ; Nagy, Peter D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3531-94d2bb086ef34c1311a06a641c0483db20ff27de1146ed1ce4239d364ed00b3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Actin</topic><topic>Actin Cytoskeleton - metabolism</topic><topic>Adenosine triphosphate</topic><topic>ATP</topic><topic>Biogenesis</topic><topic>biomolecular condensate</topic><topic>Biomolecular Condensates - metabolism</topic><topic>Bushy stunt</topic><topic>Carmovirus - metabolism</topic><topic>Carmovirus - physiology</topic><topic>Condensates</topic><topic>Cytosol - metabolism</topic><topic>Cytosol - virology</topic><topic>Droplets</topic><topic>Endoplasmic reticulum</topic><topic>Endoplasmic Reticulum - metabolism</topic><topic>Fermentation</topic><topic>Filaments</topic><topic>Glycolysis</topic><topic>Intracellular Membranes - metabolism</topic><topic>Intracellular Membranes - virology</topic><topic>Liquid phases</topic><topic>Membranes</topic><topic>Nicotiana - virology</topic><topic>Organelles</topic><topic>Organelles - metabolism</topic><topic>Organelles - virology</topic><topic>Phase separation</topic><topic>plant RNA virus</topic><topic>Plant viruses</topic><topic>Proteins</topic><topic>Replication</topic><topic>RNA viruses</topic><topic>Tomatoes</topic><topic>Tombusvirus - physiology</topic><topic>Viral Proteins - metabolism</topic><topic>Viral replication</topic><topic>Virus Replication</topic><topic>Viruses</topic><topic>virus–host interaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Wenwu</creatorcontrib><creatorcontrib>Nagy, Peter D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Wenwu</au><au>Nagy, Peter D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Co‐opted cytosolic proteins form condensate substructures within membranous replication organelles of a positive‐strand RNA virus</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2024-09</date><risdate>2024</risdate><volume>243</volume><issue>5</issue><spage>1917</spage><epage>1935</epage><pages>1917-1935</pages><issn>0028-646X</issn><issn>1469-8137</issn><eissn>1469-8137</eissn><abstract>Summary Positive‐strand RNA viruses co‐opt organellar membranes for biogenesis of viral replication organelles (VROs). Tombusviruses also co‐opt pro‐viral cytosolic proteins to VROs. It is currently not known what type of molecular organization keeps co‐opted proteins sequestered within membranous VROs. In this study, we employed tomato bushy stunt virus (TBSV) and carnation Italian ringspot virus (CIRV) – Nicotiana benthamiana pathosystems to identify biomolecular condensate formation in VROs. We show that TBSV p33 and the CIRV p36 replication proteins sequester glycolytic and fermentation enzymes in unique condensate substructures associated with membranous VROs. We find that p33 and p36 form droplets in vitro driven by intrinsically disordered region. The replication protein organizes partitioning of co‐opted host proteins into droplets. VRO‐associated condensates are critical for local adenosine triphosphate production to support energy for virus replication. We find that co‐opted endoplasmic reticulum membranes and actin filaments form meshworks within and around VRO condensates, contributing to unique composition and structure. We propose that p33/p36 organize liquid–liquid phase separation of co‐opted concentrated host proteins in condensate substructures within membranous VROs. Overall, we demonstrate that subverted membranes and condensate substructures co‐exist and are critical for VRO functions. The replication proteins induce and connect the two substructures within VROs. See also the Commentary on this article by May, 243: 1636–1638.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38515267</pmid><doi>10.1111/nph.19691</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-4164-1237</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2024-09, Vol.243 (5), p.1917-1935
issn 0028-646X
1469-8137
1469-8137
language eng
recordid cdi_proquest_miscellaneous_2974001596
source MEDLINE; Access via Wiley Online Library
subjects Actin
Actin Cytoskeleton - metabolism
Adenosine triphosphate
ATP
Biogenesis
biomolecular condensate
Biomolecular Condensates - metabolism
Bushy stunt
Carmovirus - metabolism
Carmovirus - physiology
Condensates
Cytosol - metabolism
Cytosol - virology
Droplets
Endoplasmic reticulum
Endoplasmic Reticulum - metabolism
Fermentation
Filaments
Glycolysis
Intracellular Membranes - metabolism
Intracellular Membranes - virology
Liquid phases
Membranes
Nicotiana - virology
Organelles
Organelles - metabolism
Organelles - virology
Phase separation
plant RNA virus
Plant viruses
Proteins
Replication
RNA viruses
Tomatoes
Tombusvirus - physiology
Viral Proteins - metabolism
Viral replication
Virus Replication
Viruses
virus–host interaction
title Co‐opted cytosolic proteins form condensate substructures within membranous replication organelles of a positive‐strand RNA virus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T02%3A08%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Co%E2%80%90opted%20cytosolic%20proteins%20form%20condensate%20substructures%20within%20membranous%20replication%20organelles%20of%20a%20positive%E2%80%90strand%20RNA%20virus&rft.jtitle=The%20New%20phytologist&rft.au=Lin,%20Wenwu&rft.date=2024-09&rft.volume=243&rft.issue=5&rft.spage=1917&rft.epage=1935&rft.pages=1917-1935&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.19691&rft_dat=%3Cproquest_cross%3E2974001596%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3086459316&rft_id=info:pmid/38515267&rfr_iscdi=true