Detection of atrial fibrillation in patients after stroke
[...]we wish to caution that a classification relying on detected atrial fibrillation is limited by the heterogeneous monitoring approaches for the assessment of subclinical atrial fibrillation and, even more so, by the fleeting nature of the often infrequent and asymptomatic paroxysmal atrial fibri...
Gespeichert in:
Veröffentlicht in: | Lancet neurology 2024-04, Vol.23 (4), p.335-336 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 336 |
---|---|
container_issue | 4 |
container_start_page | 335 |
container_title | Lancet neurology |
container_volume | 23 |
creator | Siontis, Konstantinos C Noseworthy, Peter A Friedman, Paul A |
description | [...]we wish to caution that a classification relying on detected atrial fibrillation is limited by the heterogeneous monitoring approaches for the assessment of subclinical atrial fibrillation and, even more so, by the fleeting nature of the often infrequent and asymptomatic paroxysmal atrial fibrillation. [...]we propose a fourth category that would include patients without previously known atrial fibrillation but who have clinical markers, such as an artificial intelligence (AI) enhanced electrocardiogram (ECG) indicating a high probability of subclinical or silent atrial fibrillation. Deep learning AI models based on convolutional neural network methods can be applied to raw ECG data to detect or predict various cardiac conditions.2 These AI-ECG algorithms do not rely on specific or pre-defined ECG characteristics and can detect pathology even when the ECG is seemingly normal by human expert interpretation. In an analysis of patients with embolic stroke of undetermined source, the AI-ECG-detected probability of atrial fibrillation correlated with the likelihood of atrial fibrillation detection by ambulatory monitoring.3 Patients with embolic stroke of undetermined source and a high AI-ECG probability of atrial fibrillation might even be considered for oral anticoagulation in the absence of an elevated bleeding risk. |
doi_str_mv | 10.1016/S1474-4422(24)00051-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2973103935</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1474442224000516</els_id><sourcerecordid>3039714819</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-e28720cb412ca1ce0dd0cc4573ceaec1c585054f74106169fe3bf89eb568b7273</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMorq7-BKXgZT1U89mkJ5H1ExY8qOfQphPI2m3XJBX892Y_3IMXTxmGZybvPAidEXxFMCmuXwmXPOec0gnllxhjQfJiDx1t24XY39WUjtBxCHOMKeGKHKIRUwIrRcsjVN5BBBNd32W9zaroXdVm1tXetW21brsuW6YKuhiyykbwWYi-_4ATdGCrNsDp9h2j94f7t-lTPnt5fJ7eznLDlIo5UCUpNjUn1FTEAG4abAwXkhmowBAjUhbBreQEF6QoLbDaqhJqUahaUsnGaLLZu_T95wAh6oULBlK8DvohaFpKRjArmUjoxR903g--S-k0S4RcXV8mSmwo4_sQPFi99G5R-W9NsF651Wu3eiVOU67XbnWR5s6324d6Ac1u6ldmAm42ACQdXw68DiZ5M9A4nxzrpnf_fPEDsFuHQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3039714819</pqid></control><display><type>article</type><title>Detection of atrial fibrillation in patients after stroke</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>ProQuest Central UK/Ireland</source><creator>Siontis, Konstantinos C ; Noseworthy, Peter A ; Friedman, Paul A</creator><creatorcontrib>Siontis, Konstantinos C ; Noseworthy, Peter A ; Friedman, Paul A</creatorcontrib><description>[...]we wish to caution that a classification relying on detected atrial fibrillation is limited by the heterogeneous monitoring approaches for the assessment of subclinical atrial fibrillation and, even more so, by the fleeting nature of the often infrequent and asymptomatic paroxysmal atrial fibrillation. [...]we propose a fourth category that would include patients without previously known atrial fibrillation but who have clinical markers, such as an artificial intelligence (AI) enhanced electrocardiogram (ECG) indicating a high probability of subclinical or silent atrial fibrillation. Deep learning AI models based on convolutional neural network methods can be applied to raw ECG data to detect or predict various cardiac conditions.2 These AI-ECG algorithms do not rely on specific or pre-defined ECG characteristics and can detect pathology even when the ECG is seemingly normal by human expert interpretation. In an analysis of patients with embolic stroke of undetermined source, the AI-ECG-detected probability of atrial fibrillation correlated with the likelihood of atrial fibrillation detection by ambulatory monitoring.3 Patients with embolic stroke of undetermined source and a high AI-ECG probability of atrial fibrillation might even be considered for oral anticoagulation in the absence of an elevated bleeding risk.</description><identifier>ISSN: 1474-4422</identifier><identifier>EISSN: 1474-4465</identifier><identifier>DOI: 10.1016/S1474-4422(24)00051-6</identifier><identifier>PMID: 38508829</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Algorithms ; Artificial intelligence ; Atrial Fibrillation - complications ; Atrial Fibrillation - diagnosis ; Brain Ischemia - diagnosis ; Cardiac arrhythmia ; Classification ; Deep learning ; EKG ; Electrocardiography ; Fibrillation ; Humans ; Neural networks ; Risk Factors ; Sinuses ; Stroke ; Stroke - complications ; Stroke - diagnosis</subject><ispartof>Lancet neurology, 2024-04, Vol.23 (4), p.335-336</ispartof><rights>2024 Elsevier Ltd</rights><rights>2024. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c388t-e28720cb412ca1ce0dd0cc4573ceaec1c585054f74106169fe3bf89eb568b7273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3039714819?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995,64385,64387,64389,72469</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38508829$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Siontis, Konstantinos C</creatorcontrib><creatorcontrib>Noseworthy, Peter A</creatorcontrib><creatorcontrib>Friedman, Paul A</creatorcontrib><title>Detection of atrial fibrillation in patients after stroke</title><title>Lancet neurology</title><addtitle>Lancet Neurol</addtitle><description>[...]we wish to caution that a classification relying on detected atrial fibrillation is limited by the heterogeneous monitoring approaches for the assessment of subclinical atrial fibrillation and, even more so, by the fleeting nature of the often infrequent and asymptomatic paroxysmal atrial fibrillation. [...]we propose a fourth category that would include patients without previously known atrial fibrillation but who have clinical markers, such as an artificial intelligence (AI) enhanced electrocardiogram (ECG) indicating a high probability of subclinical or silent atrial fibrillation. Deep learning AI models based on convolutional neural network methods can be applied to raw ECG data to detect or predict various cardiac conditions.2 These AI-ECG algorithms do not rely on specific or pre-defined ECG characteristics and can detect pathology even when the ECG is seemingly normal by human expert interpretation. In an analysis of patients with embolic stroke of undetermined source, the AI-ECG-detected probability of atrial fibrillation correlated with the likelihood of atrial fibrillation detection by ambulatory monitoring.3 Patients with embolic stroke of undetermined source and a high AI-ECG probability of atrial fibrillation might even be considered for oral anticoagulation in the absence of an elevated bleeding risk.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Atrial Fibrillation - complications</subject><subject>Atrial Fibrillation - diagnosis</subject><subject>Brain Ischemia - diagnosis</subject><subject>Cardiac arrhythmia</subject><subject>Classification</subject><subject>Deep learning</subject><subject>EKG</subject><subject>Electrocardiography</subject><subject>Fibrillation</subject><subject>Humans</subject><subject>Neural networks</subject><subject>Risk Factors</subject><subject>Sinuses</subject><subject>Stroke</subject><subject>Stroke - complications</subject><subject>Stroke - diagnosis</subject><issn>1474-4422</issn><issn>1474-4465</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkE1LxDAQhoMorq7-BKXgZT1U89mkJ5H1ExY8qOfQphPI2m3XJBX892Y_3IMXTxmGZybvPAidEXxFMCmuXwmXPOec0gnllxhjQfJiDx1t24XY39WUjtBxCHOMKeGKHKIRUwIrRcsjVN5BBBNd32W9zaroXdVm1tXetW21brsuW6YKuhiyykbwWYi-_4ATdGCrNsDp9h2j94f7t-lTPnt5fJ7eznLDlIo5UCUpNjUn1FTEAG4abAwXkhmowBAjUhbBreQEF6QoLbDaqhJqUahaUsnGaLLZu_T95wAh6oULBlK8DvohaFpKRjArmUjoxR903g--S-k0S4RcXV8mSmwo4_sQPFi99G5R-W9NsF651Wu3eiVOU67XbnWR5s6324d6Ac1u6ldmAm42ACQdXw68DiZ5M9A4nxzrpnf_fPEDsFuHQA</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Siontis, Konstantinos C</creator><creator>Noseworthy, Peter A</creator><creator>Friedman, Paul A</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0TZ</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8C2</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>202404</creationdate><title>Detection of atrial fibrillation in patients after stroke</title><author>Siontis, Konstantinos C ; Noseworthy, Peter A ; Friedman, Paul A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-e28720cb412ca1ce0dd0cc4573ceaec1c585054f74106169fe3bf89eb568b7273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Atrial Fibrillation - complications</topic><topic>Atrial Fibrillation - diagnosis</topic><topic>Brain Ischemia - diagnosis</topic><topic>Cardiac arrhythmia</topic><topic>Classification</topic><topic>Deep learning</topic><topic>EKG</topic><topic>Electrocardiography</topic><topic>Fibrillation</topic><topic>Humans</topic><topic>Neural networks</topic><topic>Risk Factors</topic><topic>Sinuses</topic><topic>Stroke</topic><topic>Stroke - complications</topic><topic>Stroke - diagnosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Siontis, Konstantinos C</creatorcontrib><creatorcontrib>Noseworthy, Peter A</creatorcontrib><creatorcontrib>Friedman, Paul A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Pharma and Biotech Premium PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Lancet Titles</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Lancet neurology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Siontis, Konstantinos C</au><au>Noseworthy, Peter A</au><au>Friedman, Paul A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of atrial fibrillation in patients after stroke</atitle><jtitle>Lancet neurology</jtitle><addtitle>Lancet Neurol</addtitle><date>2024-04</date><risdate>2024</risdate><volume>23</volume><issue>4</issue><spage>335</spage><epage>336</epage><pages>335-336</pages><issn>1474-4422</issn><eissn>1474-4465</eissn><abstract>[...]we wish to caution that a classification relying on detected atrial fibrillation is limited by the heterogeneous monitoring approaches for the assessment of subclinical atrial fibrillation and, even more so, by the fleeting nature of the often infrequent and asymptomatic paroxysmal atrial fibrillation. [...]we propose a fourth category that would include patients without previously known atrial fibrillation but who have clinical markers, such as an artificial intelligence (AI) enhanced electrocardiogram (ECG) indicating a high probability of subclinical or silent atrial fibrillation. Deep learning AI models based on convolutional neural network methods can be applied to raw ECG data to detect or predict various cardiac conditions.2 These AI-ECG algorithms do not rely on specific or pre-defined ECG characteristics and can detect pathology even when the ECG is seemingly normal by human expert interpretation. In an analysis of patients with embolic stroke of undetermined source, the AI-ECG-detected probability of atrial fibrillation correlated with the likelihood of atrial fibrillation detection by ambulatory monitoring.3 Patients with embolic stroke of undetermined source and a high AI-ECG probability of atrial fibrillation might even be considered for oral anticoagulation in the absence of an elevated bleeding risk.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>38508829</pmid><doi>10.1016/S1474-4422(24)00051-6</doi><tpages>2</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1474-4422 |
ispartof | Lancet neurology, 2024-04, Vol.23 (4), p.335-336 |
issn | 1474-4422 1474-4465 |
language | eng |
recordid | cdi_proquest_miscellaneous_2973103935 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete; ProQuest Central UK/Ireland |
subjects | Algorithms Artificial intelligence Atrial Fibrillation - complications Atrial Fibrillation - diagnosis Brain Ischemia - diagnosis Cardiac arrhythmia Classification Deep learning EKG Electrocardiography Fibrillation Humans Neural networks Risk Factors Sinuses Stroke Stroke - complications Stroke - diagnosis |
title | Detection of atrial fibrillation in patients after stroke |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A08%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20atrial%20fibrillation%20in%20patients%20after%20stroke&rft.jtitle=Lancet%20neurology&rft.au=Siontis,%20Konstantinos%20C&rft.date=2024-04&rft.volume=23&rft.issue=4&rft.spage=335&rft.epage=336&rft.pages=335-336&rft.issn=1474-4422&rft.eissn=1474-4465&rft_id=info:doi/10.1016/S1474-4422(24)00051-6&rft_dat=%3Cproquest_cross%3E3039714819%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3039714819&rft_id=info:pmid/38508829&rft_els_id=S1474442224000516&rfr_iscdi=true |