A thermally coupled metal hydride hydrogen storage and fuel cell system

This paper examines the ability of metal hydride storage systems to supply hydrogen to a fuel cell with a time varying demand, when the metal hydride tanks are thermally coupled to the fuel cell. A two-dimensional mathematical model is utilized to compare different heat transfer enhancements and sto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources 2006-10, Vol.161 (1), p.346-355
Hauptverfasser: MacDonald, Brendan D., Rowe, Andrew M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 355
container_issue 1
container_start_page 346
container_title Journal of power sources
container_volume 161
creator MacDonald, Brendan D.
Rowe, Andrew M.
description This paper examines the ability of metal hydride storage systems to supply hydrogen to a fuel cell with a time varying demand, when the metal hydride tanks are thermally coupled to the fuel cell. A two-dimensional mathematical model is utilized to compare different heat transfer enhancements and storage tank configurations. The scenario investigated involves two metal hydride tanks containing the alloy Ti 0.98Zr 0.02V 0.43Fe 0.09Cr 0.05Mn 1.5, located in the air exhaust stream of a fuel cell. Three cases are simulated: a base case with no heat transfer enhancements, a case with external fins attached to the outside of the tank, and a case where an annular tank design is used. For the imposed duty cycle, the base case is insufficient to provide the hydrogen demands of the system, while both the finned and annular cases are able to meet the demands. The finned case yields higher pressures and occupies more space, while the annular case yields acceptable pressures and requires less space. Furthermore, the annular metal hydride tank meets the requirements of the fuel cell while providing a more robust and compact hydrogen storage system.
doi_str_mv 10.1016/j.jpowsour.2006.04.018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29729445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775306006586</els_id><sourcerecordid>29729445</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-1168a20f993ac47e5ae0f2f15b8073649459ea339cef0f12c267ef2f0db1077a3</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEuXjLyAvsCWcYyeON1AFBakSC8yW65whlRMXOwH135NSECPTuzx3791DyAWDnAGrrtf5ehM-UxhjXgBUOYgcWH1AZqyWPCtkWR6SGXBZZ1KW_JicpLQGAMYkzMjilg5vGDvj_ZbaMG48NrTDwXj6tm1i2-B3hlfsaRpCNK9ITd9QN6KnFr2naZsG7M7IkTM-4flPnpKX-7vn-UO2fFo8zm-XmRVMDBljVW0KcEpxY4XE0iC4wrFyVYPklVCiVGg4VxYdOFbYopI4AdCsGEhp-Cm52u_dxPA-Yhp016bdHabHMCZdKFkoIcoJrPagjSGliE5vYtuZuNUM9M6bXutfb3rnTYPQk7dp8PKnwSRrvIumt236m665qkDtuJs9h9O7Hy1GnWyLvcWmjWgH3YT2v6ovmE-HtQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29729445</pqid></control><display><type>article</type><title>A thermally coupled metal hydride hydrogen storage and fuel cell system</title><source>Elsevier ScienceDirect Journals</source><creator>MacDonald, Brendan D. ; Rowe, Andrew M.</creator><creatorcontrib>MacDonald, Brendan D. ; Rowe, Andrew M.</creatorcontrib><description>This paper examines the ability of metal hydride storage systems to supply hydrogen to a fuel cell with a time varying demand, when the metal hydride tanks are thermally coupled to the fuel cell. A two-dimensional mathematical model is utilized to compare different heat transfer enhancements and storage tank configurations. The scenario investigated involves two metal hydride tanks containing the alloy Ti 0.98Zr 0.02V 0.43Fe 0.09Cr 0.05Mn 1.5, located in the air exhaust stream of a fuel cell. Three cases are simulated: a base case with no heat transfer enhancements, a case with external fins attached to the outside of the tank, and a case where an annular tank design is used. For the imposed duty cycle, the base case is insufficient to provide the hydrogen demands of the system, while both the finned and annular cases are able to meet the demands. The finned case yields higher pressures and occupies more space, while the annular case yields acceptable pressures and requires less space. Furthermore, the annular metal hydride tank meets the requirements of the fuel cell while providing a more robust and compact hydrogen storage system.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2006.04.018</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Alternative fuels. Production and utilization ; Applied sciences ; Dynamic model ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel cell ; Fuel cells ; Fuels ; Heat transfer ; Hydrogen ; Hydrogen storage ; Metal hydride</subject><ispartof>Journal of power sources, 2006-10, Vol.161 (1), p.346-355</ispartof><rights>2006 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-1168a20f993ac47e5ae0f2f15b8073649459ea339cef0f12c267ef2f0db1077a3</citedby><cites>FETCH-LOGICAL-c414t-1168a20f993ac47e5ae0f2f15b8073649459ea339cef0f12c267ef2f0db1077a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378775306006586$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18396098$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>MacDonald, Brendan D.</creatorcontrib><creatorcontrib>Rowe, Andrew M.</creatorcontrib><title>A thermally coupled metal hydride hydrogen storage and fuel cell system</title><title>Journal of power sources</title><description>This paper examines the ability of metal hydride storage systems to supply hydrogen to a fuel cell with a time varying demand, when the metal hydride tanks are thermally coupled to the fuel cell. A two-dimensional mathematical model is utilized to compare different heat transfer enhancements and storage tank configurations. The scenario investigated involves two metal hydride tanks containing the alloy Ti 0.98Zr 0.02V 0.43Fe 0.09Cr 0.05Mn 1.5, located in the air exhaust stream of a fuel cell. Three cases are simulated: a base case with no heat transfer enhancements, a case with external fins attached to the outside of the tank, and a case where an annular tank design is used. For the imposed duty cycle, the base case is insufficient to provide the hydrogen demands of the system, while both the finned and annular cases are able to meet the demands. The finned case yields higher pressures and occupies more space, while the annular case yields acceptable pressures and requires less space. Furthermore, the annular metal hydride tank meets the requirements of the fuel cell while providing a more robust and compact hydrogen storage system.</description><subject>Alternative fuels. Production and utilization</subject><subject>Applied sciences</subject><subject>Dynamic model</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel cell</subject><subject>Fuel cells</subject><subject>Fuels</subject><subject>Heat transfer</subject><subject>Hydrogen</subject><subject>Hydrogen storage</subject><subject>Metal hydride</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EEuXjLyAvsCWcYyeON1AFBakSC8yW65whlRMXOwH135NSECPTuzx3791DyAWDnAGrrtf5ehM-UxhjXgBUOYgcWH1AZqyWPCtkWR6SGXBZZ1KW_JicpLQGAMYkzMjilg5vGDvj_ZbaMG48NrTDwXj6tm1i2-B3hlfsaRpCNK9ITd9QN6KnFr2naZsG7M7IkTM-4flPnpKX-7vn-UO2fFo8zm-XmRVMDBljVW0KcEpxY4XE0iC4wrFyVYPklVCiVGg4VxYdOFbYopI4AdCsGEhp-Cm52u_dxPA-Yhp016bdHabHMCZdKFkoIcoJrPagjSGliE5vYtuZuNUM9M6bXutfb3rnTYPQk7dp8PKnwSRrvIumt236m665qkDtuJs9h9O7Hy1GnWyLvcWmjWgH3YT2v6ovmE-HtQ</recordid><startdate>20061020</startdate><enddate>20061020</enddate><creator>MacDonald, Brendan D.</creator><creator>Rowe, Andrew M.</creator><general>Elsevier B.V</general><general>Elsevier Sequoia</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20061020</creationdate><title>A thermally coupled metal hydride hydrogen storage and fuel cell system</title><author>MacDonald, Brendan D. ; Rowe, Andrew M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-1168a20f993ac47e5ae0f2f15b8073649459ea339cef0f12c267ef2f0db1077a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Alternative fuels. Production and utilization</topic><topic>Applied sciences</topic><topic>Dynamic model</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel cell</topic><topic>Fuel cells</topic><topic>Fuels</topic><topic>Heat transfer</topic><topic>Hydrogen</topic><topic>Hydrogen storage</topic><topic>Metal hydride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MacDonald, Brendan D.</creatorcontrib><creatorcontrib>Rowe, Andrew M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MacDonald, Brendan D.</au><au>Rowe, Andrew M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A thermally coupled metal hydride hydrogen storage and fuel cell system</atitle><jtitle>Journal of power sources</jtitle><date>2006-10-20</date><risdate>2006</risdate><volume>161</volume><issue>1</issue><spage>346</spage><epage>355</epage><pages>346-355</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>This paper examines the ability of metal hydride storage systems to supply hydrogen to a fuel cell with a time varying demand, when the metal hydride tanks are thermally coupled to the fuel cell. A two-dimensional mathematical model is utilized to compare different heat transfer enhancements and storage tank configurations. The scenario investigated involves two metal hydride tanks containing the alloy Ti 0.98Zr 0.02V 0.43Fe 0.09Cr 0.05Mn 1.5, located in the air exhaust stream of a fuel cell. Three cases are simulated: a base case with no heat transfer enhancements, a case with external fins attached to the outside of the tank, and a case where an annular tank design is used. For the imposed duty cycle, the base case is insufficient to provide the hydrogen demands of the system, while both the finned and annular cases are able to meet the demands. The finned case yields higher pressures and occupies more space, while the annular case yields acceptable pressures and requires less space. Furthermore, the annular metal hydride tank meets the requirements of the fuel cell while providing a more robust and compact hydrogen storage system.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2006.04.018</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-7753
ispartof Journal of power sources, 2006-10, Vol.161 (1), p.346-355
issn 0378-7753
1873-2755
language eng
recordid cdi_proquest_miscellaneous_29729445
source Elsevier ScienceDirect Journals
subjects Alternative fuels. Production and utilization
Applied sciences
Dynamic model
Energy
Energy. Thermal use of fuels
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Fuel cell
Fuel cells
Fuels
Heat transfer
Hydrogen
Hydrogen storage
Metal hydride
title A thermally coupled metal hydride hydrogen storage and fuel cell system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A02%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20thermally%20coupled%20metal%20hydride%20hydrogen%20storage%20and%20fuel%20cell%20system&rft.jtitle=Journal%20of%20power%20sources&rft.au=MacDonald,%20Brendan%20D.&rft.date=2006-10-20&rft.volume=161&rft.issue=1&rft.spage=346&rft.epage=355&rft.pages=346-355&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2006.04.018&rft_dat=%3Cproquest_cross%3E29729445%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29729445&rft_id=info:pmid/&rft_els_id=S0378775306006586&rfr_iscdi=true