A thermally coupled metal hydride hydrogen storage and fuel cell system
This paper examines the ability of metal hydride storage systems to supply hydrogen to a fuel cell with a time varying demand, when the metal hydride tanks are thermally coupled to the fuel cell. A two-dimensional mathematical model is utilized to compare different heat transfer enhancements and sto...
Gespeichert in:
Veröffentlicht in: | Journal of power sources 2006-10, Vol.161 (1), p.346-355 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 355 |
---|---|
container_issue | 1 |
container_start_page | 346 |
container_title | Journal of power sources |
container_volume | 161 |
creator | MacDonald, Brendan D. Rowe, Andrew M. |
description | This paper examines the ability of metal hydride storage systems to supply hydrogen to a fuel cell with a time varying demand, when the metal hydride tanks are thermally coupled to the fuel cell. A two-dimensional mathematical model is utilized to compare different heat transfer enhancements and storage tank configurations. The scenario investigated involves two metal hydride tanks containing the alloy Ti
0.98Zr
0.02V
0.43Fe
0.09Cr
0.05Mn
1.5, located in the air exhaust stream of a fuel cell. Three cases are simulated: a base case with no heat transfer enhancements, a case with external fins attached to the outside of the tank, and a case where an annular tank design is used. For the imposed duty cycle, the base case is insufficient to provide the hydrogen demands of the system, while both the finned and annular cases are able to meet the demands. The finned case yields higher pressures and occupies more space, while the annular case yields acceptable pressures and requires less space. Furthermore, the annular metal hydride tank meets the requirements of the fuel cell while providing a more robust and compact hydrogen storage system. |
doi_str_mv | 10.1016/j.jpowsour.2006.04.018 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29729445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775306006586</els_id><sourcerecordid>29729445</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-1168a20f993ac47e5ae0f2f15b8073649459ea339cef0f12c267ef2f0db1077a3</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEuXjLyAvsCWcYyeON1AFBakSC8yW65whlRMXOwH135NSECPTuzx3791DyAWDnAGrrtf5ehM-UxhjXgBUOYgcWH1AZqyWPCtkWR6SGXBZZ1KW_JicpLQGAMYkzMjilg5vGDvj_ZbaMG48NrTDwXj6tm1i2-B3hlfsaRpCNK9ITd9QN6KnFr2naZsG7M7IkTM-4flPnpKX-7vn-UO2fFo8zm-XmRVMDBljVW0KcEpxY4XE0iC4wrFyVYPklVCiVGg4VxYdOFbYopI4AdCsGEhp-Cm52u_dxPA-Yhp016bdHabHMCZdKFkoIcoJrPagjSGliE5vYtuZuNUM9M6bXutfb3rnTYPQk7dp8PKnwSRrvIumt236m665qkDtuJs9h9O7Hy1GnWyLvcWmjWgH3YT2v6ovmE-HtQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29729445</pqid></control><display><type>article</type><title>A thermally coupled metal hydride hydrogen storage and fuel cell system</title><source>Elsevier ScienceDirect Journals</source><creator>MacDonald, Brendan D. ; Rowe, Andrew M.</creator><creatorcontrib>MacDonald, Brendan D. ; Rowe, Andrew M.</creatorcontrib><description>This paper examines the ability of metal hydride storage systems to supply hydrogen to a fuel cell with a time varying demand, when the metal hydride tanks are thermally coupled to the fuel cell. A two-dimensional mathematical model is utilized to compare different heat transfer enhancements and storage tank configurations. The scenario investigated involves two metal hydride tanks containing the alloy Ti
0.98Zr
0.02V
0.43Fe
0.09Cr
0.05Mn
1.5, located in the air exhaust stream of a fuel cell. Three cases are simulated: a base case with no heat transfer enhancements, a case with external fins attached to the outside of the tank, and a case where an annular tank design is used. For the imposed duty cycle, the base case is insufficient to provide the hydrogen demands of the system, while both the finned and annular cases are able to meet the demands. The finned case yields higher pressures and occupies more space, while the annular case yields acceptable pressures and requires less space. Furthermore, the annular metal hydride tank meets the requirements of the fuel cell while providing a more robust and compact hydrogen storage system.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2006.04.018</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Alternative fuels. Production and utilization ; Applied sciences ; Dynamic model ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel cell ; Fuel cells ; Fuels ; Heat transfer ; Hydrogen ; Hydrogen storage ; Metal hydride</subject><ispartof>Journal of power sources, 2006-10, Vol.161 (1), p.346-355</ispartof><rights>2006 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-1168a20f993ac47e5ae0f2f15b8073649459ea339cef0f12c267ef2f0db1077a3</citedby><cites>FETCH-LOGICAL-c414t-1168a20f993ac47e5ae0f2f15b8073649459ea339cef0f12c267ef2f0db1077a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378775306006586$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18396098$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>MacDonald, Brendan D.</creatorcontrib><creatorcontrib>Rowe, Andrew M.</creatorcontrib><title>A thermally coupled metal hydride hydrogen storage and fuel cell system</title><title>Journal of power sources</title><description>This paper examines the ability of metal hydride storage systems to supply hydrogen to a fuel cell with a time varying demand, when the metal hydride tanks are thermally coupled to the fuel cell. A two-dimensional mathematical model is utilized to compare different heat transfer enhancements and storage tank configurations. The scenario investigated involves two metal hydride tanks containing the alloy Ti
0.98Zr
0.02V
0.43Fe
0.09Cr
0.05Mn
1.5, located in the air exhaust stream of a fuel cell. Three cases are simulated: a base case with no heat transfer enhancements, a case with external fins attached to the outside of the tank, and a case where an annular tank design is used. For the imposed duty cycle, the base case is insufficient to provide the hydrogen demands of the system, while both the finned and annular cases are able to meet the demands. The finned case yields higher pressures and occupies more space, while the annular case yields acceptable pressures and requires less space. Furthermore, the annular metal hydride tank meets the requirements of the fuel cell while providing a more robust and compact hydrogen storage system.</description><subject>Alternative fuels. Production and utilization</subject><subject>Applied sciences</subject><subject>Dynamic model</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel cell</subject><subject>Fuel cells</subject><subject>Fuels</subject><subject>Heat transfer</subject><subject>Hydrogen</subject><subject>Hydrogen storage</subject><subject>Metal hydride</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EEuXjLyAvsCWcYyeON1AFBakSC8yW65whlRMXOwH135NSECPTuzx3791DyAWDnAGrrtf5ehM-UxhjXgBUOYgcWH1AZqyWPCtkWR6SGXBZZ1KW_JicpLQGAMYkzMjilg5vGDvj_ZbaMG48NrTDwXj6tm1i2-B3hlfsaRpCNK9ITd9QN6KnFr2naZsG7M7IkTM-4flPnpKX-7vn-UO2fFo8zm-XmRVMDBljVW0KcEpxY4XE0iC4wrFyVYPklVCiVGg4VxYdOFbYopI4AdCsGEhp-Cm52u_dxPA-Yhp016bdHabHMCZdKFkoIcoJrPagjSGliE5vYtuZuNUM9M6bXutfb3rnTYPQk7dp8PKnwSRrvIumt236m665qkDtuJs9h9O7Hy1GnWyLvcWmjWgH3YT2v6ovmE-HtQ</recordid><startdate>20061020</startdate><enddate>20061020</enddate><creator>MacDonald, Brendan D.</creator><creator>Rowe, Andrew M.</creator><general>Elsevier B.V</general><general>Elsevier Sequoia</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20061020</creationdate><title>A thermally coupled metal hydride hydrogen storage and fuel cell system</title><author>MacDonald, Brendan D. ; Rowe, Andrew M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-1168a20f993ac47e5ae0f2f15b8073649459ea339cef0f12c267ef2f0db1077a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Alternative fuels. Production and utilization</topic><topic>Applied sciences</topic><topic>Dynamic model</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel cell</topic><topic>Fuel cells</topic><topic>Fuels</topic><topic>Heat transfer</topic><topic>Hydrogen</topic><topic>Hydrogen storage</topic><topic>Metal hydride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MacDonald, Brendan D.</creatorcontrib><creatorcontrib>Rowe, Andrew M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MacDonald, Brendan D.</au><au>Rowe, Andrew M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A thermally coupled metal hydride hydrogen storage and fuel cell system</atitle><jtitle>Journal of power sources</jtitle><date>2006-10-20</date><risdate>2006</risdate><volume>161</volume><issue>1</issue><spage>346</spage><epage>355</epage><pages>346-355</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>This paper examines the ability of metal hydride storage systems to supply hydrogen to a fuel cell with a time varying demand, when the metal hydride tanks are thermally coupled to the fuel cell. A two-dimensional mathematical model is utilized to compare different heat transfer enhancements and storage tank configurations. The scenario investigated involves two metal hydride tanks containing the alloy Ti
0.98Zr
0.02V
0.43Fe
0.09Cr
0.05Mn
1.5, located in the air exhaust stream of a fuel cell. Three cases are simulated: a base case with no heat transfer enhancements, a case with external fins attached to the outside of the tank, and a case where an annular tank design is used. For the imposed duty cycle, the base case is insufficient to provide the hydrogen demands of the system, while both the finned and annular cases are able to meet the demands. The finned case yields higher pressures and occupies more space, while the annular case yields acceptable pressures and requires less space. Furthermore, the annular metal hydride tank meets the requirements of the fuel cell while providing a more robust and compact hydrogen storage system.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2006.04.018</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-7753 |
ispartof | Journal of power sources, 2006-10, Vol.161 (1), p.346-355 |
issn | 0378-7753 1873-2755 |
language | eng |
recordid | cdi_proquest_miscellaneous_29729445 |
source | Elsevier ScienceDirect Journals |
subjects | Alternative fuels. Production and utilization Applied sciences Dynamic model Energy Energy. Thermal use of fuels Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology Fuel cell Fuel cells Fuels Heat transfer Hydrogen Hydrogen storage Metal hydride |
title | A thermally coupled metal hydride hydrogen storage and fuel cell system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A02%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20thermally%20coupled%20metal%20hydride%20hydrogen%20storage%20and%20fuel%20cell%20system&rft.jtitle=Journal%20of%20power%20sources&rft.au=MacDonald,%20Brendan%20D.&rft.date=2006-10-20&rft.volume=161&rft.issue=1&rft.spage=346&rft.epage=355&rft.pages=346-355&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2006.04.018&rft_dat=%3Cproquest_cross%3E29729445%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29729445&rft_id=info:pmid/&rft_els_id=S0378775306006586&rfr_iscdi=true |