Multicenter integrated analysis of noncoding CRISPRi screens
The ENCODE Consortium’s efforts to annotate noncoding cis -regulatory elements (CREs) have advanced our understanding of gene regulatory landscapes. Pooled, noncoding CRISPR screens offer a systematic approach to investigate cis -regulatory mechanisms. The ENCODE4 Functional Characterization Centers...
Gespeichert in:
Veröffentlicht in: | Nature methods 2024-04, Vol.21 (4), p.723-734 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 734 |
---|---|
container_issue | 4 |
container_start_page | 723 |
container_title | Nature methods |
container_volume | 21 |
creator | Yao, David Tycko, Josh Oh, Jin Woo Bounds, Lexi R. Gosai, Sager J. Lataniotis, Lazaros Mackay-Smith, Ava Doughty, Benjamin R. Gabdank, Idan Schmidt, Henri Guerrero-Altamirano, Tania Siklenka, Keith Guo, Katherine White, Alexander D. Youngworth, Ingrid Andreeva, Kalina Ren, Xingjie Barrera, Alejandro Luo, Yunhai Yardımcı, Galip Gürkan Tewhey, Ryan Kundaje, Anshul Greenleaf, William J. Sabeti, Pardis C. Leslie, Christina Pritykin, Yuri Moore, Jill E. Beer, Michael A. Gersbach, Charles A. Reddy, Timothy E. Shen, Yin Engreitz, Jesse M. Bassik, Michael C. Reilly, Steven K. |
description | The ENCODE Consortium’s efforts to annotate noncoding
cis
-regulatory elements (CREs) have advanced our understanding of gene regulatory landscapes. Pooled, noncoding CRISPR screens offer a systematic approach to investigate
cis
-regulatory mechanisms. The ENCODE4 Functional Characterization Centers conducted 108 screens in human cell lines, comprising >540,000 perturbations across 24.85 megabases of the genome. Using 332 functionally confirmed CRE–gene links in K562 cells, we established guidelines for screening endogenous noncoding elements with CRISPR interference (CRISPRi), including accurate detection of CREs that exhibit variable, often low, transcriptional effects. Benchmarking five screen analysis tools, we find that CASA produces the most conservative CRE calls and is robust to artifacts of low-specificity single guide RNAs. We uncover a subtle DNA strand bias for CRISPRi in transcribed regions with implications for screen design and analysis. Together, we provide an accessible data resource, predesigned single guide RNAs for targeting 3,275,697 ENCODE SCREEN candidate CREs with CRISPRi and screening guidelines to accelerate functional characterization of the noncoding genome.
This analysis provides 108 noncoding CRISPR screens collated by the ENCODE4 consortium and establishes experimental guidelines for future CRISPRi screens characterizing functional
cis
-regulatory elements. |
doi_str_mv | 10.1038/s41592-024-02216-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2972704786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3037201355</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-cf1fb400c818ae70ac4ecc2037c25d61f34b9cdd8f93b9198adc29f24b9bacf3</originalsourceid><addsrcrecordid>eNp9kM1OAyEURonR2Fp9ARdmEjduRrnAFEjcmMa_pEZTuycMA800U6bCzKJvL9pWExcugBs497vhIHQO-BowFTeRQSFJjglLi8A45wdoCAUTOQdcHO5rLGGATmJcYkwpI8UxGlBRYAbAhuj2pW-62ljf2ZDVaV8E3dkq0143m1jHrHWZb71pq9ovssns-f1tVmfRBGt9PEVHTjfRnu3OEZo_3M8nT_n09fF5cjfNDQPZ5caBKxnGRoDQlmNtmDWGYMoNKaoxOMpKaapKOElLCVLoyhDpSLottXF0hK62sevQfvQ2dmpVR2ObRnvb9lERyQnHjItxQi__oMu2D-kvUdE0j2CgRZEosqVMaGMM1ql1qFc6bBRg9aVWbdWqpFZ9q1U8NV3sovtyZauflr3LBNAtENOTX9jwO_uf2E8VQoOW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3037201355</pqid></control><display><type>article</type><title>Multicenter integrated analysis of noncoding CRISPRi screens</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Yao, David ; Tycko, Josh ; Oh, Jin Woo ; Bounds, Lexi R. ; Gosai, Sager J. ; Lataniotis, Lazaros ; Mackay-Smith, Ava ; Doughty, Benjamin R. ; Gabdank, Idan ; Schmidt, Henri ; Guerrero-Altamirano, Tania ; Siklenka, Keith ; Guo, Katherine ; White, Alexander D. ; Youngworth, Ingrid ; Andreeva, Kalina ; Ren, Xingjie ; Barrera, Alejandro ; Luo, Yunhai ; Yardımcı, Galip Gürkan ; Tewhey, Ryan ; Kundaje, Anshul ; Greenleaf, William J. ; Sabeti, Pardis C. ; Leslie, Christina ; Pritykin, Yuri ; Moore, Jill E. ; Beer, Michael A. ; Gersbach, Charles A. ; Reddy, Timothy E. ; Shen, Yin ; Engreitz, Jesse M. ; Bassik, Michael C. ; Reilly, Steven K.</creator><creatorcontrib>Yao, David ; Tycko, Josh ; Oh, Jin Woo ; Bounds, Lexi R. ; Gosai, Sager J. ; Lataniotis, Lazaros ; Mackay-Smith, Ava ; Doughty, Benjamin R. ; Gabdank, Idan ; Schmidt, Henri ; Guerrero-Altamirano, Tania ; Siklenka, Keith ; Guo, Katherine ; White, Alexander D. ; Youngworth, Ingrid ; Andreeva, Kalina ; Ren, Xingjie ; Barrera, Alejandro ; Luo, Yunhai ; Yardımcı, Galip Gürkan ; Tewhey, Ryan ; Kundaje, Anshul ; Greenleaf, William J. ; Sabeti, Pardis C. ; Leslie, Christina ; Pritykin, Yuri ; Moore, Jill E. ; Beer, Michael A. ; Gersbach, Charles A. ; Reddy, Timothy E. ; Shen, Yin ; Engreitz, Jesse M. ; Bassik, Michael C. ; Reilly, Steven K.</creatorcontrib><description>The ENCODE Consortium’s efforts to annotate noncoding
cis
-regulatory elements (CREs) have advanced our understanding of gene regulatory landscapes. Pooled, noncoding CRISPR screens offer a systematic approach to investigate
cis
-regulatory mechanisms. The ENCODE4 Functional Characterization Centers conducted 108 screens in human cell lines, comprising >540,000 perturbations across 24.85 megabases of the genome. Using 332 functionally confirmed CRE–gene links in K562 cells, we established guidelines for screening endogenous noncoding elements with CRISPR interference (CRISPRi), including accurate detection of CREs that exhibit variable, often low, transcriptional effects. Benchmarking five screen analysis tools, we find that CASA produces the most conservative CRE calls and is robust to artifacts of low-specificity single guide RNAs. We uncover a subtle DNA strand bias for CRISPRi in transcribed regions with implications for screen design and analysis. Together, we provide an accessible data resource, predesigned single guide RNAs for targeting 3,275,697 ENCODE SCREEN candidate CREs with CRISPRi and screening guidelines to accelerate functional characterization of the noncoding genome.
This analysis provides 108 noncoding CRISPR screens collated by the ENCODE4 consortium and establishes experimental guidelines for future CRISPRi screens characterizing functional
cis
-regulatory elements.</description><identifier>ISSN: 1548-7091</identifier><identifier>ISSN: 1548-7105</identifier><identifier>EISSN: 1548-7105</identifier><identifier>DOI: 10.1038/s41592-024-02216-7</identifier><identifier>PMID: 38504114</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/1647/2217 ; 631/208/191/2018 ; Analysis ; Bioinformatics ; Biological Microscopy ; Biological Techniques ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Cell lines ; Clustered Regularly Interspaced Short Palindromic Repeats - genetics ; Consortia ; CRISPR ; CRISPR-Cas Systems - genetics ; Genome ; Genomes ; Guidelines ; Humans ; K562 Cells ; Life Sciences ; Proteomics ; Regulatory mechanisms (biology) ; Regulatory sequences ; RNA, Guide, CRISPR-Cas Systems ; Screening ; Sieve analysis</subject><ispartof>Nature methods, 2024-04, Vol.21 (4), p.723-734</ispartof><rights>The Author(s) 2024. corrected publication 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-cf1fb400c818ae70ac4ecc2037c25d61f34b9cdd8f93b9198adc29f24b9bacf3</citedby><cites>FETCH-LOGICAL-c419t-cf1fb400c818ae70ac4ecc2037c25d61f34b9cdd8f93b9198adc29f24b9bacf3</cites><orcidid>0000-0003-1409-3095 ; 0000-0002-2348-4162 ; 0000-0001-5025-5886 ; 0000-0002-4607-8001 ; 0000-0001-6589-981X ; 0000-0003-3084-2287 ; 0000-0003-3140-1483 ; 0000-0002-4734-3743 ; 0000-0003-0404-0563 ; 0000-0001-6507-5191 ; 0000-0002-3545-5481 ; 0000-0002-7629-061X ; 0000-0001-9955-3809 ; 0000-0001-5185-8427 ; 0000-0002-4108-0575 ; 0000-0001-9244-9822 ; 0000-0002-2232-524X ; 0000-0002-4571-5910 ; 0000-0002-5387-310X ; 0000-0003-1478-4013 ; 0000-0003-0447-4468 ; 0000-0002-5754-1719 ; 0000-0001-9901-5613 ; 0000-0002-9843-1890</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41592-024-02216-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41592-024-02216-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38504114$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yao, David</creatorcontrib><creatorcontrib>Tycko, Josh</creatorcontrib><creatorcontrib>Oh, Jin Woo</creatorcontrib><creatorcontrib>Bounds, Lexi R.</creatorcontrib><creatorcontrib>Gosai, Sager J.</creatorcontrib><creatorcontrib>Lataniotis, Lazaros</creatorcontrib><creatorcontrib>Mackay-Smith, Ava</creatorcontrib><creatorcontrib>Doughty, Benjamin R.</creatorcontrib><creatorcontrib>Gabdank, Idan</creatorcontrib><creatorcontrib>Schmidt, Henri</creatorcontrib><creatorcontrib>Guerrero-Altamirano, Tania</creatorcontrib><creatorcontrib>Siklenka, Keith</creatorcontrib><creatorcontrib>Guo, Katherine</creatorcontrib><creatorcontrib>White, Alexander D.</creatorcontrib><creatorcontrib>Youngworth, Ingrid</creatorcontrib><creatorcontrib>Andreeva, Kalina</creatorcontrib><creatorcontrib>Ren, Xingjie</creatorcontrib><creatorcontrib>Barrera, Alejandro</creatorcontrib><creatorcontrib>Luo, Yunhai</creatorcontrib><creatorcontrib>Yardımcı, Galip Gürkan</creatorcontrib><creatorcontrib>Tewhey, Ryan</creatorcontrib><creatorcontrib>Kundaje, Anshul</creatorcontrib><creatorcontrib>Greenleaf, William J.</creatorcontrib><creatorcontrib>Sabeti, Pardis C.</creatorcontrib><creatorcontrib>Leslie, Christina</creatorcontrib><creatorcontrib>Pritykin, Yuri</creatorcontrib><creatorcontrib>Moore, Jill E.</creatorcontrib><creatorcontrib>Beer, Michael A.</creatorcontrib><creatorcontrib>Gersbach, Charles A.</creatorcontrib><creatorcontrib>Reddy, Timothy E.</creatorcontrib><creatorcontrib>Shen, Yin</creatorcontrib><creatorcontrib>Engreitz, Jesse M.</creatorcontrib><creatorcontrib>Bassik, Michael C.</creatorcontrib><creatorcontrib>Reilly, Steven K.</creatorcontrib><title>Multicenter integrated analysis of noncoding CRISPRi screens</title><title>Nature methods</title><addtitle>Nat Methods</addtitle><addtitle>Nat Methods</addtitle><description>The ENCODE Consortium’s efforts to annotate noncoding
cis
-regulatory elements (CREs) have advanced our understanding of gene regulatory landscapes. Pooled, noncoding CRISPR screens offer a systematic approach to investigate
cis
-regulatory mechanisms. The ENCODE4 Functional Characterization Centers conducted 108 screens in human cell lines, comprising >540,000 perturbations across 24.85 megabases of the genome. Using 332 functionally confirmed CRE–gene links in K562 cells, we established guidelines for screening endogenous noncoding elements with CRISPR interference (CRISPRi), including accurate detection of CREs that exhibit variable, often low, transcriptional effects. Benchmarking five screen analysis tools, we find that CASA produces the most conservative CRE calls and is robust to artifacts of low-specificity single guide RNAs. We uncover a subtle DNA strand bias for CRISPRi in transcribed regions with implications for screen design and analysis. Together, we provide an accessible data resource, predesigned single guide RNAs for targeting 3,275,697 ENCODE SCREEN candidate CREs with CRISPRi and screening guidelines to accelerate functional characterization of the noncoding genome.
This analysis provides 108 noncoding CRISPR screens collated by the ENCODE4 consortium and establishes experimental guidelines for future CRISPRi screens characterizing functional
cis
-regulatory elements.</description><subject>631/1647/2217</subject><subject>631/208/191/2018</subject><subject>Analysis</subject><subject>Bioinformatics</subject><subject>Biological Microscopy</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Cell lines</subject><subject>Clustered Regularly Interspaced Short Palindromic Repeats - genetics</subject><subject>Consortia</subject><subject>CRISPR</subject><subject>CRISPR-Cas Systems - genetics</subject><subject>Genome</subject><subject>Genomes</subject><subject>Guidelines</subject><subject>Humans</subject><subject>K562 Cells</subject><subject>Life Sciences</subject><subject>Proteomics</subject><subject>Regulatory mechanisms (biology)</subject><subject>Regulatory sequences</subject><subject>RNA, Guide, CRISPR-Cas Systems</subject><subject>Screening</subject><subject>Sieve analysis</subject><issn>1548-7091</issn><issn>1548-7105</issn><issn>1548-7105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp9kM1OAyEURonR2Fp9ARdmEjduRrnAFEjcmMa_pEZTuycMA800U6bCzKJvL9pWExcugBs497vhIHQO-BowFTeRQSFJjglLi8A45wdoCAUTOQdcHO5rLGGATmJcYkwpI8UxGlBRYAbAhuj2pW-62ljf2ZDVaV8E3dkq0143m1jHrHWZb71pq9ovssns-f1tVmfRBGt9PEVHTjfRnu3OEZo_3M8nT_n09fF5cjfNDQPZ5caBKxnGRoDQlmNtmDWGYMoNKaoxOMpKaapKOElLCVLoyhDpSLottXF0hK62sevQfvQ2dmpVR2ObRnvb9lERyQnHjItxQi__oMu2D-kvUdE0j2CgRZEosqVMaGMM1ql1qFc6bBRg9aVWbdWqpFZ9q1U8NV3sovtyZauflr3LBNAtENOTX9jwO_uf2E8VQoOW</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Yao, David</creator><creator>Tycko, Josh</creator><creator>Oh, Jin Woo</creator><creator>Bounds, Lexi R.</creator><creator>Gosai, Sager J.</creator><creator>Lataniotis, Lazaros</creator><creator>Mackay-Smith, Ava</creator><creator>Doughty, Benjamin R.</creator><creator>Gabdank, Idan</creator><creator>Schmidt, Henri</creator><creator>Guerrero-Altamirano, Tania</creator><creator>Siklenka, Keith</creator><creator>Guo, Katherine</creator><creator>White, Alexander D.</creator><creator>Youngworth, Ingrid</creator><creator>Andreeva, Kalina</creator><creator>Ren, Xingjie</creator><creator>Barrera, Alejandro</creator><creator>Luo, Yunhai</creator><creator>Yardımcı, Galip Gürkan</creator><creator>Tewhey, Ryan</creator><creator>Kundaje, Anshul</creator><creator>Greenleaf, William J.</creator><creator>Sabeti, Pardis C.</creator><creator>Leslie, Christina</creator><creator>Pritykin, Yuri</creator><creator>Moore, Jill E.</creator><creator>Beer, Michael A.</creator><creator>Gersbach, Charles A.</creator><creator>Reddy, Timothy E.</creator><creator>Shen, Yin</creator><creator>Engreitz, Jesse M.</creator><creator>Bassik, Michael C.</creator><creator>Reilly, Steven K.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SS</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1409-3095</orcidid><orcidid>https://orcid.org/0000-0002-2348-4162</orcidid><orcidid>https://orcid.org/0000-0001-5025-5886</orcidid><orcidid>https://orcid.org/0000-0002-4607-8001</orcidid><orcidid>https://orcid.org/0000-0001-6589-981X</orcidid><orcidid>https://orcid.org/0000-0003-3084-2287</orcidid><orcidid>https://orcid.org/0000-0003-3140-1483</orcidid><orcidid>https://orcid.org/0000-0002-4734-3743</orcidid><orcidid>https://orcid.org/0000-0003-0404-0563</orcidid><orcidid>https://orcid.org/0000-0001-6507-5191</orcidid><orcidid>https://orcid.org/0000-0002-3545-5481</orcidid><orcidid>https://orcid.org/0000-0002-7629-061X</orcidid><orcidid>https://orcid.org/0000-0001-9955-3809</orcidid><orcidid>https://orcid.org/0000-0001-5185-8427</orcidid><orcidid>https://orcid.org/0000-0002-4108-0575</orcidid><orcidid>https://orcid.org/0000-0001-9244-9822</orcidid><orcidid>https://orcid.org/0000-0002-2232-524X</orcidid><orcidid>https://orcid.org/0000-0002-4571-5910</orcidid><orcidid>https://orcid.org/0000-0002-5387-310X</orcidid><orcidid>https://orcid.org/0000-0003-1478-4013</orcidid><orcidid>https://orcid.org/0000-0003-0447-4468</orcidid><orcidid>https://orcid.org/0000-0002-5754-1719</orcidid><orcidid>https://orcid.org/0000-0001-9901-5613</orcidid><orcidid>https://orcid.org/0000-0002-9843-1890</orcidid></search><sort><creationdate>20240401</creationdate><title>Multicenter integrated analysis of noncoding CRISPRi screens</title><author>Yao, David ; Tycko, Josh ; Oh, Jin Woo ; Bounds, Lexi R. ; Gosai, Sager J. ; Lataniotis, Lazaros ; Mackay-Smith, Ava ; Doughty, Benjamin R. ; Gabdank, Idan ; Schmidt, Henri ; Guerrero-Altamirano, Tania ; Siklenka, Keith ; Guo, Katherine ; White, Alexander D. ; Youngworth, Ingrid ; Andreeva, Kalina ; Ren, Xingjie ; Barrera, Alejandro ; Luo, Yunhai ; Yardımcı, Galip Gürkan ; Tewhey, Ryan ; Kundaje, Anshul ; Greenleaf, William J. ; Sabeti, Pardis C. ; Leslie, Christina ; Pritykin, Yuri ; Moore, Jill E. ; Beer, Michael A. ; Gersbach, Charles A. ; Reddy, Timothy E. ; Shen, Yin ; Engreitz, Jesse M. ; Bassik, Michael C. ; Reilly, Steven K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-cf1fb400c818ae70ac4ecc2037c25d61f34b9cdd8f93b9198adc29f24b9bacf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>631/1647/2217</topic><topic>631/208/191/2018</topic><topic>Analysis</topic><topic>Bioinformatics</topic><topic>Biological Microscopy</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Cell lines</topic><topic>Clustered Regularly Interspaced Short Palindromic Repeats - genetics</topic><topic>Consortia</topic><topic>CRISPR</topic><topic>CRISPR-Cas Systems - genetics</topic><topic>Genome</topic><topic>Genomes</topic><topic>Guidelines</topic><topic>Humans</topic><topic>K562 Cells</topic><topic>Life Sciences</topic><topic>Proteomics</topic><topic>Regulatory mechanisms (biology)</topic><topic>Regulatory sequences</topic><topic>RNA, Guide, CRISPR-Cas Systems</topic><topic>Screening</topic><topic>Sieve analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, David</creatorcontrib><creatorcontrib>Tycko, Josh</creatorcontrib><creatorcontrib>Oh, Jin Woo</creatorcontrib><creatorcontrib>Bounds, Lexi R.</creatorcontrib><creatorcontrib>Gosai, Sager J.</creatorcontrib><creatorcontrib>Lataniotis, Lazaros</creatorcontrib><creatorcontrib>Mackay-Smith, Ava</creatorcontrib><creatorcontrib>Doughty, Benjamin R.</creatorcontrib><creatorcontrib>Gabdank, Idan</creatorcontrib><creatorcontrib>Schmidt, Henri</creatorcontrib><creatorcontrib>Guerrero-Altamirano, Tania</creatorcontrib><creatorcontrib>Siklenka, Keith</creatorcontrib><creatorcontrib>Guo, Katherine</creatorcontrib><creatorcontrib>White, Alexander D.</creatorcontrib><creatorcontrib>Youngworth, Ingrid</creatorcontrib><creatorcontrib>Andreeva, Kalina</creatorcontrib><creatorcontrib>Ren, Xingjie</creatorcontrib><creatorcontrib>Barrera, Alejandro</creatorcontrib><creatorcontrib>Luo, Yunhai</creatorcontrib><creatorcontrib>Yardımcı, Galip Gürkan</creatorcontrib><creatorcontrib>Tewhey, Ryan</creatorcontrib><creatorcontrib>Kundaje, Anshul</creatorcontrib><creatorcontrib>Greenleaf, William J.</creatorcontrib><creatorcontrib>Sabeti, Pardis C.</creatorcontrib><creatorcontrib>Leslie, Christina</creatorcontrib><creatorcontrib>Pritykin, Yuri</creatorcontrib><creatorcontrib>Moore, Jill E.</creatorcontrib><creatorcontrib>Beer, Michael A.</creatorcontrib><creatorcontrib>Gersbach, Charles A.</creatorcontrib><creatorcontrib>Reddy, Timothy E.</creatorcontrib><creatorcontrib>Shen, Yin</creatorcontrib><creatorcontrib>Engreitz, Jesse M.</creatorcontrib><creatorcontrib>Bassik, Michael C.</creatorcontrib><creatorcontrib>Reilly, Steven K.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, David</au><au>Tycko, Josh</au><au>Oh, Jin Woo</au><au>Bounds, Lexi R.</au><au>Gosai, Sager J.</au><au>Lataniotis, Lazaros</au><au>Mackay-Smith, Ava</au><au>Doughty, Benjamin R.</au><au>Gabdank, Idan</au><au>Schmidt, Henri</au><au>Guerrero-Altamirano, Tania</au><au>Siklenka, Keith</au><au>Guo, Katherine</au><au>White, Alexander D.</au><au>Youngworth, Ingrid</au><au>Andreeva, Kalina</au><au>Ren, Xingjie</au><au>Barrera, Alejandro</au><au>Luo, Yunhai</au><au>Yardımcı, Galip Gürkan</au><au>Tewhey, Ryan</au><au>Kundaje, Anshul</au><au>Greenleaf, William J.</au><au>Sabeti, Pardis C.</au><au>Leslie, Christina</au><au>Pritykin, Yuri</au><au>Moore, Jill E.</au><au>Beer, Michael A.</au><au>Gersbach, Charles A.</au><au>Reddy, Timothy E.</au><au>Shen, Yin</au><au>Engreitz, Jesse M.</au><au>Bassik, Michael C.</au><au>Reilly, Steven K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multicenter integrated analysis of noncoding CRISPRi screens</atitle><jtitle>Nature methods</jtitle><stitle>Nat Methods</stitle><addtitle>Nat Methods</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>21</volume><issue>4</issue><spage>723</spage><epage>734</epage><pages>723-734</pages><issn>1548-7091</issn><issn>1548-7105</issn><eissn>1548-7105</eissn><abstract>The ENCODE Consortium’s efforts to annotate noncoding
cis
-regulatory elements (CREs) have advanced our understanding of gene regulatory landscapes. Pooled, noncoding CRISPR screens offer a systematic approach to investigate
cis
-regulatory mechanisms. The ENCODE4 Functional Characterization Centers conducted 108 screens in human cell lines, comprising >540,000 perturbations across 24.85 megabases of the genome. Using 332 functionally confirmed CRE–gene links in K562 cells, we established guidelines for screening endogenous noncoding elements with CRISPR interference (CRISPRi), including accurate detection of CREs that exhibit variable, often low, transcriptional effects. Benchmarking five screen analysis tools, we find that CASA produces the most conservative CRE calls and is robust to artifacts of low-specificity single guide RNAs. We uncover a subtle DNA strand bias for CRISPRi in transcribed regions with implications for screen design and analysis. Together, we provide an accessible data resource, predesigned single guide RNAs for targeting 3,275,697 ENCODE SCREEN candidate CREs with CRISPRi and screening guidelines to accelerate functional characterization of the noncoding genome.
This analysis provides 108 noncoding CRISPR screens collated by the ENCODE4 consortium and establishes experimental guidelines for future CRISPRi screens characterizing functional
cis
-regulatory elements.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>38504114</pmid><doi>10.1038/s41592-024-02216-7</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1409-3095</orcidid><orcidid>https://orcid.org/0000-0002-2348-4162</orcidid><orcidid>https://orcid.org/0000-0001-5025-5886</orcidid><orcidid>https://orcid.org/0000-0002-4607-8001</orcidid><orcidid>https://orcid.org/0000-0001-6589-981X</orcidid><orcidid>https://orcid.org/0000-0003-3084-2287</orcidid><orcidid>https://orcid.org/0000-0003-3140-1483</orcidid><orcidid>https://orcid.org/0000-0002-4734-3743</orcidid><orcidid>https://orcid.org/0000-0003-0404-0563</orcidid><orcidid>https://orcid.org/0000-0001-6507-5191</orcidid><orcidid>https://orcid.org/0000-0002-3545-5481</orcidid><orcidid>https://orcid.org/0000-0002-7629-061X</orcidid><orcidid>https://orcid.org/0000-0001-9955-3809</orcidid><orcidid>https://orcid.org/0000-0001-5185-8427</orcidid><orcidid>https://orcid.org/0000-0002-4108-0575</orcidid><orcidid>https://orcid.org/0000-0001-9244-9822</orcidid><orcidid>https://orcid.org/0000-0002-2232-524X</orcidid><orcidid>https://orcid.org/0000-0002-4571-5910</orcidid><orcidid>https://orcid.org/0000-0002-5387-310X</orcidid><orcidid>https://orcid.org/0000-0003-1478-4013</orcidid><orcidid>https://orcid.org/0000-0003-0447-4468</orcidid><orcidid>https://orcid.org/0000-0002-5754-1719</orcidid><orcidid>https://orcid.org/0000-0001-9901-5613</orcidid><orcidid>https://orcid.org/0000-0002-9843-1890</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1548-7091 |
ispartof | Nature methods, 2024-04, Vol.21 (4), p.723-734 |
issn | 1548-7091 1548-7105 1548-7105 |
language | eng |
recordid | cdi_proquest_miscellaneous_2972704786 |
source | MEDLINE; Nature; SpringerLink Journals - AutoHoldings |
subjects | 631/1647/2217 631/208/191/2018 Analysis Bioinformatics Biological Microscopy Biological Techniques Biomedical and Life Sciences Biomedical Engineering/Biotechnology Cell lines Clustered Regularly Interspaced Short Palindromic Repeats - genetics Consortia CRISPR CRISPR-Cas Systems - genetics Genome Genomes Guidelines Humans K562 Cells Life Sciences Proteomics Regulatory mechanisms (biology) Regulatory sequences RNA, Guide, CRISPR-Cas Systems Screening Sieve analysis |
title | Multicenter integrated analysis of noncoding CRISPRi screens |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T01%3A19%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multicenter%20integrated%20analysis%20of%20noncoding%20CRISPRi%20screens&rft.jtitle=Nature%20methods&rft.au=Yao,%20David&rft.date=2024-04-01&rft.volume=21&rft.issue=4&rft.spage=723&rft.epage=734&rft.pages=723-734&rft.issn=1548-7091&rft.eissn=1548-7105&rft_id=info:doi/10.1038/s41592-024-02216-7&rft_dat=%3Cproquest_cross%3E3037201355%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3037201355&rft_id=info:pmid/38504114&rfr_iscdi=true |