OsKASI‐2 is required for the regulation of unsaturation levels of membrane lipids and chilling tolerance in rice

Summary Chilling stress has seriously limited the global production and geographical distribution of rice. However, the molecular mechanisms associated with plant responses to chilling stress are less known. In this study, we revealed a member of β‐ketoacyl‐ACP synthase I family (KASI), OsKASI‐2 whi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant biotechnology journal 2024-08, Vol.22 (8), p.2157-2172
Hauptverfasser: Zhang, Lin, Wang, Siyao, Bai, Bin, Chen, Yijun, Xiang, Zhipan, Chen, Chen, Kuang, Xuemei, Yang, Yuanzhu, Fu, Jun, Chen, Liangbi, Mao, Dandan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2172
container_issue 8
container_start_page 2157
container_title Plant biotechnology journal
container_volume 22
creator Zhang, Lin
Wang, Siyao
Bai, Bin
Chen, Yijun
Xiang, Zhipan
Chen, Chen
Kuang, Xuemei
Yang, Yuanzhu
Fu, Jun
Chen, Liangbi
Mao, Dandan
description Summary Chilling stress has seriously limited the global production and geographical distribution of rice. However, the molecular mechanisms associated with plant responses to chilling stress are less known. In this study, we revealed a member of β‐ketoacyl‐ACP synthase I family (KASI), OsKASI‐2 which confers chilling tolerance in rice. OsKASI‐2 encodes a chloroplast‐localized KASI enzyme mainly expressed in the leaves and anthers of rice and strongly induced by chilling stress. Disruption of OsKASI‐2 led to decreased KAS enzymatic activity and the levels of unsaturated fatty acids, which impairs degree of unsaturation of membrane lipids, thus increased sensitivity to chilling stress in rice. However, the overexpression of OsKASI‐2 significantly improved the chilling tolerance ability in rice. In addition, OsKASI‐2 may regulate ROS metabolism in response to chilling stress. Natural variation of OsKASI‐2 might result in difference in chilling tolerance between indica and japonica accessions, and Hap1 of OsKASI‐2 confers chilling tolerance in rice. Taken together, we suggest OsKASI‐2 is critical for regulating degree of unsaturation of membrane lipids and ROS accumulation for maintenance of membrane structural homeostasis under chilling stress, and provide a potential target gene for improving chilling tolerance of rice.
doi_str_mv 10.1111/pbi.14336
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2972704110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153652455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3816-297bff3454313823cde8b52d354e0d6c803ed99fc638952b091c21d9bc1ae5803</originalsourceid><addsrcrecordid>eNqFkc1O3DAURi1UBHTaBS-ALHVTFgP-H2cJCOiIkajUdm0l9g0YOclgJ0Wz4xF4xj4JngZmgYTwxva9R0fX_hDap-SI5nW8rPwRFZyrLbRHhZpNZ0qyT5uzELvoc0p3hDCqpNpBu1xLokhB9lC8Tlcnv-b_Hp8Y9glHuB98BIfrLuL-FnLhZghl77sWdzUe2lT2QxzvAf5CSOtyA00VyxZw8EvvEi5bh-2tD8G3N7jvAuSmBexbHL2FL2i7LkOCry_7BP25OP999mO6uL6cn50sppZrqqasmFV1zYUUnHLNuHWgK8kclwKIU1YTDq4oaqu4LiSrSEEto66oLC1B5u4EfR-9y9jdD5B60_hkIYQ8aTckw6nk-Z-ElB-ieRY2I4LStfXbG_SuG2KbH2I40UwKLajO1OFI2dilFKE2y-ibMq4MJWadmcmZmf-ZZfbgxThUDbgN-RpSBo5H4MEHWL1vMj9P56PyGQcdn_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3082548418</pqid></control><display><type>article</type><title>OsKASI‐2 is required for the regulation of unsaturation levels of membrane lipids and chilling tolerance in rice</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Online Library Open Access</source><creator>Zhang, Lin ; Wang, Siyao ; Bai, Bin ; Chen, Yijun ; Xiang, Zhipan ; Chen, Chen ; Kuang, Xuemei ; Yang, Yuanzhu ; Fu, Jun ; Chen, Liangbi ; Mao, Dandan</creator><creatorcontrib>Zhang, Lin ; Wang, Siyao ; Bai, Bin ; Chen, Yijun ; Xiang, Zhipan ; Chen, Chen ; Kuang, Xuemei ; Yang, Yuanzhu ; Fu, Jun ; Chen, Liangbi ; Mao, Dandan</creatorcontrib><description>Summary Chilling stress has seriously limited the global production and geographical distribution of rice. However, the molecular mechanisms associated with plant responses to chilling stress are less known. In this study, we revealed a member of β‐ketoacyl‐ACP synthase I family (KASI), OsKASI‐2 which confers chilling tolerance in rice. OsKASI‐2 encodes a chloroplast‐localized KASI enzyme mainly expressed in the leaves and anthers of rice and strongly induced by chilling stress. Disruption of OsKASI‐2 led to decreased KAS enzymatic activity and the levels of unsaturated fatty acids, which impairs degree of unsaturation of membrane lipids, thus increased sensitivity to chilling stress in rice. However, the overexpression of OsKASI‐2 significantly improved the chilling tolerance ability in rice. In addition, OsKASI‐2 may regulate ROS metabolism in response to chilling stress. Natural variation of OsKASI‐2 might result in difference in chilling tolerance between indica and japonica accessions, and Hap1 of OsKASI‐2 confers chilling tolerance in rice. Taken together, we suggest OsKASI‐2 is critical for regulating degree of unsaturation of membrane lipids and ROS accumulation for maintenance of membrane structural homeostasis under chilling stress, and provide a potential target gene for improving chilling tolerance of rice.</description><identifier>ISSN: 1467-7644</identifier><identifier>ISSN: 1467-7652</identifier><identifier>EISSN: 1467-7652</identifier><identifier>DOI: 10.1111/pbi.14336</identifier><identifier>PMID: 38506090</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Anthers ; Biosynthesis ; biotechnology ; Chill strengthening ; Chilling ; chilling stress ; Chloroplasts ; Cold Temperature ; CRISPR ; degree of unsaturation of membrane lipids ; Enzymatic activity ; enzyme activity ; Enzymes ; family ; Fatty acids ; Gene Expression Regulation, Plant ; genes ; Genotype &amp; phenotype ; Geographical distribution ; Homeostasis ; Lipid metabolism ; Lipids ; Localization ; Membrane Lipids - metabolism ; Membranes ; metabolism ; Molecular modelling ; natural variation ; Oryza - genetics ; Oryza - metabolism ; Oryza - physiology ; OsKASI‐2 ; Physiology ; Plant growth ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Reactive Oxygen Species - metabolism ; Rice ; Seeds ; Stress, Physiological ; Temperature ; Transgenic plants</subject><ispartof>Plant biotechnology journal, 2024-08, Vol.22 (8), p.2157-2172</ispartof><rights>2024 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley &amp; Sons Ltd.</rights><rights>2024 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley &amp; Sons Ltd.</rights><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3816-297bff3454313823cde8b52d354e0d6c803ed99fc638952b091c21d9bc1ae5803</cites><orcidid>0000-0003-3015-5292</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fpbi.14336$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fpbi.14336$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,1412,11543,27905,27906,45555,45556,46033,46457</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38506090$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Lin</creatorcontrib><creatorcontrib>Wang, Siyao</creatorcontrib><creatorcontrib>Bai, Bin</creatorcontrib><creatorcontrib>Chen, Yijun</creatorcontrib><creatorcontrib>Xiang, Zhipan</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Kuang, Xuemei</creatorcontrib><creatorcontrib>Yang, Yuanzhu</creatorcontrib><creatorcontrib>Fu, Jun</creatorcontrib><creatorcontrib>Chen, Liangbi</creatorcontrib><creatorcontrib>Mao, Dandan</creatorcontrib><title>OsKASI‐2 is required for the regulation of unsaturation levels of membrane lipids and chilling tolerance in rice</title><title>Plant biotechnology journal</title><addtitle>Plant Biotechnol J</addtitle><description>Summary Chilling stress has seriously limited the global production and geographical distribution of rice. However, the molecular mechanisms associated with plant responses to chilling stress are less known. In this study, we revealed a member of β‐ketoacyl‐ACP synthase I family (KASI), OsKASI‐2 which confers chilling tolerance in rice. OsKASI‐2 encodes a chloroplast‐localized KASI enzyme mainly expressed in the leaves and anthers of rice and strongly induced by chilling stress. Disruption of OsKASI‐2 led to decreased KAS enzymatic activity and the levels of unsaturated fatty acids, which impairs degree of unsaturation of membrane lipids, thus increased sensitivity to chilling stress in rice. However, the overexpression of OsKASI‐2 significantly improved the chilling tolerance ability in rice. In addition, OsKASI‐2 may regulate ROS metabolism in response to chilling stress. Natural variation of OsKASI‐2 might result in difference in chilling tolerance between indica and japonica accessions, and Hap1 of OsKASI‐2 confers chilling tolerance in rice. Taken together, we suggest OsKASI‐2 is critical for regulating degree of unsaturation of membrane lipids and ROS accumulation for maintenance of membrane structural homeostasis under chilling stress, and provide a potential target gene for improving chilling tolerance of rice.</description><subject>Anthers</subject><subject>Biosynthesis</subject><subject>biotechnology</subject><subject>Chill strengthening</subject><subject>Chilling</subject><subject>chilling stress</subject><subject>Chloroplasts</subject><subject>Cold Temperature</subject><subject>CRISPR</subject><subject>degree of unsaturation of membrane lipids</subject><subject>Enzymatic activity</subject><subject>enzyme activity</subject><subject>Enzymes</subject><subject>family</subject><subject>Fatty acids</subject><subject>Gene Expression Regulation, Plant</subject><subject>genes</subject><subject>Genotype &amp; phenotype</subject><subject>Geographical distribution</subject><subject>Homeostasis</subject><subject>Lipid metabolism</subject><subject>Lipids</subject><subject>Localization</subject><subject>Membrane Lipids - metabolism</subject><subject>Membranes</subject><subject>metabolism</subject><subject>Molecular modelling</subject><subject>natural variation</subject><subject>Oryza - genetics</subject><subject>Oryza - metabolism</subject><subject>Oryza - physiology</subject><subject>OsKASI‐2</subject><subject>Physiology</subject><subject>Plant growth</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Rice</subject><subject>Seeds</subject><subject>Stress, Physiological</subject><subject>Temperature</subject><subject>Transgenic plants</subject><issn>1467-7644</issn><issn>1467-7652</issn><issn>1467-7652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkc1O3DAURi1UBHTaBS-ALHVTFgP-H2cJCOiIkajUdm0l9g0YOclgJ0Wz4xF4xj4JngZmgYTwxva9R0fX_hDap-SI5nW8rPwRFZyrLbRHhZpNZ0qyT5uzELvoc0p3hDCqpNpBu1xLokhB9lC8Tlcnv-b_Hp8Y9glHuB98BIfrLuL-FnLhZghl77sWdzUe2lT2QxzvAf5CSOtyA00VyxZw8EvvEi5bh-2tD8G3N7jvAuSmBexbHL2FL2i7LkOCry_7BP25OP999mO6uL6cn50sppZrqqasmFV1zYUUnHLNuHWgK8kclwKIU1YTDq4oaqu4LiSrSEEto66oLC1B5u4EfR-9y9jdD5B60_hkIYQ8aTckw6nk-Z-ElB-ieRY2I4LStfXbG_SuG2KbH2I40UwKLajO1OFI2dilFKE2y-ibMq4MJWadmcmZmf-ZZfbgxThUDbgN-RpSBo5H4MEHWL1vMj9P56PyGQcdn_A</recordid><startdate>202408</startdate><enddate>202408</enddate><creator>Zhang, Lin</creator><creator>Wang, Siyao</creator><creator>Bai, Bin</creator><creator>Chen, Yijun</creator><creator>Xiang, Zhipan</creator><creator>Chen, Chen</creator><creator>Kuang, Xuemei</creator><creator>Yang, Yuanzhu</creator><creator>Fu, Jun</creator><creator>Chen, Liangbi</creator><creator>Mao, Dandan</creator><general>John Wiley &amp; Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-3015-5292</orcidid></search><sort><creationdate>202408</creationdate><title>OsKASI‐2 is required for the regulation of unsaturation levels of membrane lipids and chilling tolerance in rice</title><author>Zhang, Lin ; Wang, Siyao ; Bai, Bin ; Chen, Yijun ; Xiang, Zhipan ; Chen, Chen ; Kuang, Xuemei ; Yang, Yuanzhu ; Fu, Jun ; Chen, Liangbi ; Mao, Dandan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3816-297bff3454313823cde8b52d354e0d6c803ed99fc638952b091c21d9bc1ae5803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anthers</topic><topic>Biosynthesis</topic><topic>biotechnology</topic><topic>Chill strengthening</topic><topic>Chilling</topic><topic>chilling stress</topic><topic>Chloroplasts</topic><topic>Cold Temperature</topic><topic>CRISPR</topic><topic>degree of unsaturation of membrane lipids</topic><topic>Enzymatic activity</topic><topic>enzyme activity</topic><topic>Enzymes</topic><topic>family</topic><topic>Fatty acids</topic><topic>Gene Expression Regulation, Plant</topic><topic>genes</topic><topic>Genotype &amp; phenotype</topic><topic>Geographical distribution</topic><topic>Homeostasis</topic><topic>Lipid metabolism</topic><topic>Lipids</topic><topic>Localization</topic><topic>Membrane Lipids - metabolism</topic><topic>Membranes</topic><topic>metabolism</topic><topic>Molecular modelling</topic><topic>natural variation</topic><topic>Oryza - genetics</topic><topic>Oryza - metabolism</topic><topic>Oryza - physiology</topic><topic>OsKASI‐2</topic><topic>Physiology</topic><topic>Plant growth</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Rice</topic><topic>Seeds</topic><topic>Stress, Physiological</topic><topic>Temperature</topic><topic>Transgenic plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Lin</creatorcontrib><creatorcontrib>Wang, Siyao</creatorcontrib><creatorcontrib>Bai, Bin</creatorcontrib><creatorcontrib>Chen, Yijun</creatorcontrib><creatorcontrib>Xiang, Zhipan</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Kuang, Xuemei</creatorcontrib><creatorcontrib>Yang, Yuanzhu</creatorcontrib><creatorcontrib>Fu, Jun</creatorcontrib><creatorcontrib>Chen, Liangbi</creatorcontrib><creatorcontrib>Mao, Dandan</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Plant biotechnology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Lin</au><au>Wang, Siyao</au><au>Bai, Bin</au><au>Chen, Yijun</au><au>Xiang, Zhipan</au><au>Chen, Chen</au><au>Kuang, Xuemei</au><au>Yang, Yuanzhu</au><au>Fu, Jun</au><au>Chen, Liangbi</au><au>Mao, Dandan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>OsKASI‐2 is required for the regulation of unsaturation levels of membrane lipids and chilling tolerance in rice</atitle><jtitle>Plant biotechnology journal</jtitle><addtitle>Plant Biotechnol J</addtitle><date>2024-08</date><risdate>2024</risdate><volume>22</volume><issue>8</issue><spage>2157</spage><epage>2172</epage><pages>2157-2172</pages><issn>1467-7644</issn><issn>1467-7652</issn><eissn>1467-7652</eissn><abstract>Summary Chilling stress has seriously limited the global production and geographical distribution of rice. However, the molecular mechanisms associated with plant responses to chilling stress are less known. In this study, we revealed a member of β‐ketoacyl‐ACP synthase I family (KASI), OsKASI‐2 which confers chilling tolerance in rice. OsKASI‐2 encodes a chloroplast‐localized KASI enzyme mainly expressed in the leaves and anthers of rice and strongly induced by chilling stress. Disruption of OsKASI‐2 led to decreased KAS enzymatic activity and the levels of unsaturated fatty acids, which impairs degree of unsaturation of membrane lipids, thus increased sensitivity to chilling stress in rice. However, the overexpression of OsKASI‐2 significantly improved the chilling tolerance ability in rice. In addition, OsKASI‐2 may regulate ROS metabolism in response to chilling stress. Natural variation of OsKASI‐2 might result in difference in chilling tolerance between indica and japonica accessions, and Hap1 of OsKASI‐2 confers chilling tolerance in rice. Taken together, we suggest OsKASI‐2 is critical for regulating degree of unsaturation of membrane lipids and ROS accumulation for maintenance of membrane structural homeostasis under chilling stress, and provide a potential target gene for improving chilling tolerance of rice.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>38506090</pmid><doi>10.1111/pbi.14336</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-3015-5292</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1467-7644
ispartof Plant biotechnology journal, 2024-08, Vol.22 (8), p.2157-2172
issn 1467-7644
1467-7652
1467-7652
language eng
recordid cdi_proquest_miscellaneous_2972704110
source MEDLINE; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Online Library Open Access
subjects Anthers
Biosynthesis
biotechnology
Chill strengthening
Chilling
chilling stress
Chloroplasts
Cold Temperature
CRISPR
degree of unsaturation of membrane lipids
Enzymatic activity
enzyme activity
Enzymes
family
Fatty acids
Gene Expression Regulation, Plant
genes
Genotype & phenotype
Geographical distribution
Homeostasis
Lipid metabolism
Lipids
Localization
Membrane Lipids - metabolism
Membranes
metabolism
Molecular modelling
natural variation
Oryza - genetics
Oryza - metabolism
Oryza - physiology
OsKASI‐2
Physiology
Plant growth
Plant Proteins - genetics
Plant Proteins - metabolism
Reactive Oxygen Species - metabolism
Rice
Seeds
Stress, Physiological
Temperature
Transgenic plants
title OsKASI‐2 is required for the regulation of unsaturation levels of membrane lipids and chilling tolerance in rice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T04%3A11%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=OsKASI%E2%80%902%20is%20required%20for%20the%20regulation%20of%20unsaturation%20levels%20of%20membrane%20lipids%20and%20chilling%20tolerance%20in%20rice&rft.jtitle=Plant%20biotechnology%20journal&rft.au=Zhang,%20Lin&rft.date=2024-08&rft.volume=22&rft.issue=8&rft.spage=2157&rft.epage=2172&rft.pages=2157-2172&rft.issn=1467-7644&rft.eissn=1467-7652&rft_id=info:doi/10.1111/pbi.14336&rft_dat=%3Cproquest_cross%3E3153652455%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3082548418&rft_id=info:pmid/38506090&rfr_iscdi=true