Hydrogen-induced structural relaxation in bulk metallic glasses

In order to clarify the hydrogen-induced structural relaxation (HISR) of hydrogenated bulk and marginal metallic glasses (BMG and MMG), the hydrogen concentration ( C H) dependence of the peak temperature ( T p) and the peak height ( Q p − 1 ) of the hydrogen internal friction peak (HIFP) in a-Zr 55...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2006-12, Vol.442 (1), p.292-296
Hauptverfasser: Yamagishi, K., Tanimoto, H., Mizubayashi, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 296
container_issue 1
container_start_page 292
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 442
creator Yamagishi, K.
Tanimoto, H.
Mizubayashi, H.
description In order to clarify the hydrogen-induced structural relaxation (HISR) of hydrogenated bulk and marginal metallic glasses (BMG and MMG), the hydrogen concentration ( C H) dependence of the peak temperature ( T p) and the peak height ( Q p − 1 ) of the hydrogen internal friction peak (HIFP) in a-Zr 55Cu 30Al 10Ni 5 (numbers indicate at.%) (BMG), a-Zr 54Cu 30Al 10Ni 5Si 1 (MMG) and a-Zr 40Cu 49Al 10Si 1 (MMG) were studied. It is found that the T p versus C H data and the Q p − 1 versus C H data are well explained by the relationships of T p = Δ T p exp(− C H/ τ H) + T p,0 and Q p − 1 ∝ ln ( C H / τ H ) , respectively, not only for all the present metallic glasses but also for various Zr-base BMG and MMG reported. The characteristic C H dependence of T p and Q p − 1 was attributed to effects of the HISR. The detailed features of the C H dependence of T p and Q p − 1 were discussed in the light of material parameters and HISR.
doi_str_mv 10.1016/j.msea.2006.01.137
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29716123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S092150930601094X</els_id><sourcerecordid>29716123</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-8c8d59cd1b78cbc9c395dc15ed113fbd7f04bcd815ee4245fb6fee992faf69b63</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNNe9LZrPvYrIIgUtULBi55DdjIpqdndmuyK_fduacGbp4Hhed9hHkKuGc0YZeXdJmsj6oxTWmaUZUxUJ2TG6kqkuRTlKZlRyVlaUCnOyUWMG0opy2kxIw_LnQn9GrvUdWYENEkcwgjDGLRPAnr9owfXd4nrkmb0n0mLg_beQbL2OkaMl-TMah_x6jjn5OP56X2xTFdvL6-Lx1UKeS6HtIbaFBIMa6oaGpAgZGGAFWgYE7YxlaV5A6aeNpjzvLBNaRGl5FbbUjalmJPbQ-829F8jxkG1LgJ6rzvsx6i4rFjJuJhAfgAh9DEGtGobXKvDTjGq9q7URu1dqb0rRZmaXE2hm2O7jqC9DboDF_-Stcgpr-nE3R84nF79dhhUBIfdpM0FhEGZ3v135hddLIEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29716123</pqid></control><display><type>article</type><title>Hydrogen-induced structural relaxation in bulk metallic glasses</title><source>Elsevier ScienceDirect Journals</source><creator>Yamagishi, K. ; Tanimoto, H. ; Mizubayashi, H.</creator><creatorcontrib>Yamagishi, K. ; Tanimoto, H. ; Mizubayashi, H.</creatorcontrib><description>In order to clarify the hydrogen-induced structural relaxation (HISR) of hydrogenated bulk and marginal metallic glasses (BMG and MMG), the hydrogen concentration ( C H) dependence of the peak temperature ( T p) and the peak height ( Q p − 1 ) of the hydrogen internal friction peak (HIFP) in a-Zr 55Cu 30Al 10Ni 5 (numbers indicate at.%) (BMG), a-Zr 54Cu 30Al 10Ni 5Si 1 (MMG) and a-Zr 40Cu 49Al 10Si 1 (MMG) were studied. It is found that the T p versus C H data and the Q p − 1 versus C H data are well explained by the relationships of T p = Δ T p exp(− C H/ τ H) + T p,0 and Q p − 1 ∝ ln ( C H / τ H ) , respectively, not only for all the present metallic glasses but also for various Zr-base BMG and MMG reported. The characteristic C H dependence of T p and Q p − 1 was attributed to effects of the HISR. The detailed features of the C H dependence of T p and Q p − 1 were discussed in the light of material parameters and HISR.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2006.01.137</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Anelasticity, internal friction, stress relaxation, and mechanical resonances ; Condensed matter: structure, mechanical and thermal properties ; Exact sciences and technology ; Hydrogen ; Internal friction ; Mechanical and acoustical properties of condensed matter ; Metallic glass ; Physics ; Structural relaxation</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2006-12, Vol.442 (1), p.292-296</ispartof><rights>2006 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-8c8d59cd1b78cbc9c395dc15ed113fbd7f04bcd815ee4245fb6fee992faf69b63</citedby><cites>FETCH-LOGICAL-c449t-8c8d59cd1b78cbc9c395dc15ed113fbd7f04bcd815ee4245fb6fee992faf69b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2006.01.137$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3536,23910,23911,25119,27903,27904,45974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18340280$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yamagishi, K.</creatorcontrib><creatorcontrib>Tanimoto, H.</creatorcontrib><creatorcontrib>Mizubayashi, H.</creatorcontrib><title>Hydrogen-induced structural relaxation in bulk metallic glasses</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>In order to clarify the hydrogen-induced structural relaxation (HISR) of hydrogenated bulk and marginal metallic glasses (BMG and MMG), the hydrogen concentration ( C H) dependence of the peak temperature ( T p) and the peak height ( Q p − 1 ) of the hydrogen internal friction peak (HIFP) in a-Zr 55Cu 30Al 10Ni 5 (numbers indicate at.%) (BMG), a-Zr 54Cu 30Al 10Ni 5Si 1 (MMG) and a-Zr 40Cu 49Al 10Si 1 (MMG) were studied. It is found that the T p versus C H data and the Q p − 1 versus C H data are well explained by the relationships of T p = Δ T p exp(− C H/ τ H) + T p,0 and Q p − 1 ∝ ln ( C H / τ H ) , respectively, not only for all the present metallic glasses but also for various Zr-base BMG and MMG reported. The characteristic C H dependence of T p and Q p − 1 was attributed to effects of the HISR. The detailed features of the C H dependence of T p and Q p − 1 were discussed in the light of material parameters and HISR.</description><subject>Anelasticity, internal friction, stress relaxation, and mechanical resonances</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Exact sciences and technology</subject><subject>Hydrogen</subject><subject>Internal friction</subject><subject>Mechanical and acoustical properties of condensed matter</subject><subject>Metallic glass</subject><subject>Physics</subject><subject>Structural relaxation</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wNNe9LZrPvYrIIgUtULBi55DdjIpqdndmuyK_fduacGbp4Hhed9hHkKuGc0YZeXdJmsj6oxTWmaUZUxUJ2TG6kqkuRTlKZlRyVlaUCnOyUWMG0opy2kxIw_LnQn9GrvUdWYENEkcwgjDGLRPAnr9owfXd4nrkmb0n0mLg_beQbL2OkaMl-TMah_x6jjn5OP56X2xTFdvL6-Lx1UKeS6HtIbaFBIMa6oaGpAgZGGAFWgYE7YxlaV5A6aeNpjzvLBNaRGl5FbbUjalmJPbQ-829F8jxkG1LgJ6rzvsx6i4rFjJuJhAfgAh9DEGtGobXKvDTjGq9q7URu1dqb0rRZmaXE2hm2O7jqC9DboDF_-Stcgpr-nE3R84nF79dhhUBIfdpM0FhEGZ3v135hddLIEg</recordid><startdate>20061220</startdate><enddate>20061220</enddate><creator>Yamagishi, K.</creator><creator>Tanimoto, H.</creator><creator>Mizubayashi, H.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20061220</creationdate><title>Hydrogen-induced structural relaxation in bulk metallic glasses</title><author>Yamagishi, K. ; Tanimoto, H. ; Mizubayashi, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-8c8d59cd1b78cbc9c395dc15ed113fbd7f04bcd815ee4245fb6fee992faf69b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Anelasticity, internal friction, stress relaxation, and mechanical resonances</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Exact sciences and technology</topic><topic>Hydrogen</topic><topic>Internal friction</topic><topic>Mechanical and acoustical properties of condensed matter</topic><topic>Metallic glass</topic><topic>Physics</topic><topic>Structural relaxation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamagishi, K.</creatorcontrib><creatorcontrib>Tanimoto, H.</creatorcontrib><creatorcontrib>Mizubayashi, H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamagishi, K.</au><au>Tanimoto, H.</au><au>Mizubayashi, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogen-induced structural relaxation in bulk metallic glasses</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2006-12-20</date><risdate>2006</risdate><volume>442</volume><issue>1</issue><spage>292</spage><epage>296</epage><pages>292-296</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>In order to clarify the hydrogen-induced structural relaxation (HISR) of hydrogenated bulk and marginal metallic glasses (BMG and MMG), the hydrogen concentration ( C H) dependence of the peak temperature ( T p) and the peak height ( Q p − 1 ) of the hydrogen internal friction peak (HIFP) in a-Zr 55Cu 30Al 10Ni 5 (numbers indicate at.%) (BMG), a-Zr 54Cu 30Al 10Ni 5Si 1 (MMG) and a-Zr 40Cu 49Al 10Si 1 (MMG) were studied. It is found that the T p versus C H data and the Q p − 1 versus C H data are well explained by the relationships of T p = Δ T p exp(− C H/ τ H) + T p,0 and Q p − 1 ∝ ln ( C H / τ H ) , respectively, not only for all the present metallic glasses but also for various Zr-base BMG and MMG reported. The characteristic C H dependence of T p and Q p − 1 was attributed to effects of the HISR. The detailed features of the C H dependence of T p and Q p − 1 were discussed in the light of material parameters and HISR.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2006.01.137</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2006-12, Vol.442 (1), p.292-296
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_miscellaneous_29716123
source Elsevier ScienceDirect Journals
subjects Anelasticity, internal friction, stress relaxation, and mechanical resonances
Condensed matter: structure, mechanical and thermal properties
Exact sciences and technology
Hydrogen
Internal friction
Mechanical and acoustical properties of condensed matter
Metallic glass
Physics
Structural relaxation
title Hydrogen-induced structural relaxation in bulk metallic glasses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T10%3A20%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogen-induced%20structural%20relaxation%20in%20bulk%20metallic%20glasses&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Yamagishi,%20K.&rft.date=2006-12-20&rft.volume=442&rft.issue=1&rft.spage=292&rft.epage=296&rft.pages=292-296&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2006.01.137&rft_dat=%3Cproquest_cross%3E29716123%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29716123&rft_id=info:pmid/&rft_els_id=S092150930601094X&rfr_iscdi=true