Statistical Wave Scattering in Chaotic and Disordered Systems: Random Matrices and Maximum Entropy
We present a statistical theory of complex wave-interference phenomena, applicable to systems where the complexity in wave scattering may derive from the chaotic nature of the underlying classical dynamics, as in microwave cavities and quantum dots, or from the quenched randomness of scattering pote...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 36 |
---|---|
container_issue | |
container_start_page | 29 |
container_title | |
container_volume | 757 |
creator | Mello, P A |
description | We present a statistical theory of complex wave-interference phenomena, applicable to systems where the complexity in wave scattering may derive from the chaotic nature of the underlying classical dynamics, as in microwave cavities and quantum dots, or from the quenched randomness of scattering potentials, as in disordered conductors. The resulting interference pattern is so complex that only a statistical treatment is meaningful. We follow a maximum-entropy approach, in which Shannon's information entropy is maximized, subject to the symmetries and constraints that are physically relevant. This is done in the framework of the powerful, non-perturbative, approach known as random-matrix theory. |
doi_str_mv | 10.1063/1.1900485 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_29715611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29715611</sourcerecordid><originalsourceid>FETCH-LOGICAL-p186t-80860026f84aebeed9510d6c9e30c0af888a60fb366af96ac5402b409ca27a643</originalsourceid><addsrcrecordid>eNotj8tOwzAURC0BEm1hwR94xS7lOnYcmx0qLSC1QqIg2FU3zg0Y5VFiF9G_JzxWszij0RzGzgRMBWh5IabCAiiTHbAx5DJTkKpUH7IRgFVJquTLMRuH8A6Q2jw3I1asI0YfondY82f8JL52GCP1vn3lvuWzN-wGyLEt-bUPXV9STyVf70OkJlzyhwF0DV9h7L2j8Ntb4Zdvdg2ft7HvtvsTdlRhHej0PyfsaTF_nN0my_ubu9nVMtkKo2NiwOjhlq6MQiqISpsJKLWzJMEBVsYY1FAVUmusrEb3I1cosA7THLWSE3b-t7vtu48dhbhpfHBU19hStwubwVhkWgj5Dfs9V_U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>29715611</pqid></control><display><type>conference_proceeding</type><title>Statistical Wave Scattering in Chaotic and Disordered Systems: Random Matrices and Maximum Entropy</title><source>AIP Journals Complete</source><creator>Mello, P A</creator><creatorcontrib>Mello, P A</creatorcontrib><description>We present a statistical theory of complex wave-interference phenomena, applicable to systems where the complexity in wave scattering may derive from the chaotic nature of the underlying classical dynamics, as in microwave cavities and quantum dots, or from the quenched randomness of scattering potentials, as in disordered conductors. The resulting interference pattern is so complex that only a statistical treatment is meaningful. We follow a maximum-entropy approach, in which Shannon's information entropy is maximized, subject to the symmetries and constraints that are physically relevant. This is done in the framework of the powerful, non-perturbative, approach known as random-matrix theory.</description><identifier>ISSN: 0094-243X</identifier><identifier>ISBN: 0735402426</identifier><identifier>ISBN: 9780735402423</identifier><identifier>DOI: 10.1063/1.1900485</identifier><language>eng</language><ispartof>Statistical Physics and Beyond, 2005, Vol.757, p.29-36</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Mello, P A</creatorcontrib><title>Statistical Wave Scattering in Chaotic and Disordered Systems: Random Matrices and Maximum Entropy</title><title>Statistical Physics and Beyond</title><description>We present a statistical theory of complex wave-interference phenomena, applicable to systems where the complexity in wave scattering may derive from the chaotic nature of the underlying classical dynamics, as in microwave cavities and quantum dots, or from the quenched randomness of scattering potentials, as in disordered conductors. The resulting interference pattern is so complex that only a statistical treatment is meaningful. We follow a maximum-entropy approach, in which Shannon's information entropy is maximized, subject to the symmetries and constraints that are physically relevant. This is done in the framework of the powerful, non-perturbative, approach known as random-matrix theory.</description><issn>0094-243X</issn><isbn>0735402426</isbn><isbn>9780735402423</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotj8tOwzAURC0BEm1hwR94xS7lOnYcmx0qLSC1QqIg2FU3zg0Y5VFiF9G_JzxWszij0RzGzgRMBWh5IabCAiiTHbAx5DJTkKpUH7IRgFVJquTLMRuH8A6Q2jw3I1asI0YfondY82f8JL52GCP1vn3lvuWzN-wGyLEt-bUPXV9STyVf70OkJlzyhwF0DV9h7L2j8Ntb4Zdvdg2ft7HvtvsTdlRhHej0PyfsaTF_nN0my_ubu9nVMtkKo2NiwOjhlq6MQiqISpsJKLWzJMEBVsYY1FAVUmusrEb3I1cosA7THLWSE3b-t7vtu48dhbhpfHBU19hStwubwVhkWgj5Dfs9V_U</recordid><startdate>20050101</startdate><enddate>20050101</enddate><creator>Mello, P A</creator><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20050101</creationdate><title>Statistical Wave Scattering in Chaotic and Disordered Systems: Random Matrices and Maximum Entropy</title><author>Mello, P A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p186t-80860026f84aebeed9510d6c9e30c0af888a60fb366af96ac5402b409ca27a643</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mello, P A</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mello, P A</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Statistical Wave Scattering in Chaotic and Disordered Systems: Random Matrices and Maximum Entropy</atitle><btitle>Statistical Physics and Beyond</btitle><date>2005-01-01</date><risdate>2005</risdate><volume>757</volume><spage>29</spage><epage>36</epage><pages>29-36</pages><issn>0094-243X</issn><isbn>0735402426</isbn><isbn>9780735402423</isbn><abstract>We present a statistical theory of complex wave-interference phenomena, applicable to systems where the complexity in wave scattering may derive from the chaotic nature of the underlying classical dynamics, as in microwave cavities and quantum dots, or from the quenched randomness of scattering potentials, as in disordered conductors. The resulting interference pattern is so complex that only a statistical treatment is meaningful. We follow a maximum-entropy approach, in which Shannon's information entropy is maximized, subject to the symmetries and constraints that are physically relevant. This is done in the framework of the powerful, non-perturbative, approach known as random-matrix theory.</abstract><doi>10.1063/1.1900485</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | Statistical Physics and Beyond, 2005, Vol.757, p.29-36 |
issn | 0094-243X |
language | eng |
recordid | cdi_proquest_miscellaneous_29715611 |
source | AIP Journals Complete |
title | Statistical Wave Scattering in Chaotic and Disordered Systems: Random Matrices and Maximum Entropy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T03%3A13%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Statistical%20Wave%20Scattering%20in%20Chaotic%20and%20Disordered%20Systems:%20Random%20Matrices%20and%20Maximum%20Entropy&rft.btitle=Statistical%20Physics%20and%20Beyond&rft.au=Mello,%20P%20A&rft.date=2005-01-01&rft.volume=757&rft.spage=29&rft.epage=36&rft.pages=29-36&rft.issn=0094-243X&rft.isbn=0735402426&rft.isbn_list=9780735402423&rft_id=info:doi/10.1063/1.1900485&rft_dat=%3Cproquest%3E29715611%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29715611&rft_id=info:pmid/&rfr_iscdi=true |