Statistical Wave Scattering in Chaotic and Disordered Systems: Random Matrices and Maximum Entropy

We present a statistical theory of complex wave-interference phenomena, applicable to systems where the complexity in wave scattering may derive from the chaotic nature of the underlying classical dynamics, as in microwave cavities and quantum dots, or from the quenched randomness of scattering pote...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Mello, P A
Format: Tagungsbericht
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 36
container_issue
container_start_page 29
container_title
container_volume 757
creator Mello, P A
description We present a statistical theory of complex wave-interference phenomena, applicable to systems where the complexity in wave scattering may derive from the chaotic nature of the underlying classical dynamics, as in microwave cavities and quantum dots, or from the quenched randomness of scattering potentials, as in disordered conductors. The resulting interference pattern is so complex that only a statistical treatment is meaningful. We follow a maximum-entropy approach, in which Shannon's information entropy is maximized, subject to the symmetries and constraints that are physically relevant. This is done in the framework of the powerful, non-perturbative, approach known as random-matrix theory.
doi_str_mv 10.1063/1.1900485
format Conference Proceeding
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_29715611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29715611</sourcerecordid><originalsourceid>FETCH-LOGICAL-p186t-80860026f84aebeed9510d6c9e30c0af888a60fb366af96ac5402b409ca27a643</originalsourceid><addsrcrecordid>eNotj8tOwzAURC0BEm1hwR94xS7lOnYcmx0qLSC1QqIg2FU3zg0Y5VFiF9G_JzxWszij0RzGzgRMBWh5IabCAiiTHbAx5DJTkKpUH7IRgFVJquTLMRuH8A6Q2jw3I1asI0YfondY82f8JL52GCP1vn3lvuWzN-wGyLEt-bUPXV9STyVf70OkJlzyhwF0DV9h7L2j8Ntb4Zdvdg2ft7HvtvsTdlRhHej0PyfsaTF_nN0my_ubu9nVMtkKo2NiwOjhlq6MQiqISpsJKLWzJMEBVsYY1FAVUmusrEb3I1cosA7THLWSE3b-t7vtu48dhbhpfHBU19hStwubwVhkWgj5Dfs9V_U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>29715611</pqid></control><display><type>conference_proceeding</type><title>Statistical Wave Scattering in Chaotic and Disordered Systems: Random Matrices and Maximum Entropy</title><source>AIP Journals Complete</source><creator>Mello, P A</creator><creatorcontrib>Mello, P A</creatorcontrib><description>We present a statistical theory of complex wave-interference phenomena, applicable to systems where the complexity in wave scattering may derive from the chaotic nature of the underlying classical dynamics, as in microwave cavities and quantum dots, or from the quenched randomness of scattering potentials, as in disordered conductors. The resulting interference pattern is so complex that only a statistical treatment is meaningful. We follow a maximum-entropy approach, in which Shannon's information entropy is maximized, subject to the symmetries and constraints that are physically relevant. This is done in the framework of the powerful, non-perturbative, approach known as random-matrix theory.</description><identifier>ISSN: 0094-243X</identifier><identifier>ISBN: 0735402426</identifier><identifier>ISBN: 9780735402423</identifier><identifier>DOI: 10.1063/1.1900485</identifier><language>eng</language><ispartof>Statistical Physics and Beyond, 2005, Vol.757, p.29-36</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Mello, P A</creatorcontrib><title>Statistical Wave Scattering in Chaotic and Disordered Systems: Random Matrices and Maximum Entropy</title><title>Statistical Physics and Beyond</title><description>We present a statistical theory of complex wave-interference phenomena, applicable to systems where the complexity in wave scattering may derive from the chaotic nature of the underlying classical dynamics, as in microwave cavities and quantum dots, or from the quenched randomness of scattering potentials, as in disordered conductors. The resulting interference pattern is so complex that only a statistical treatment is meaningful. We follow a maximum-entropy approach, in which Shannon's information entropy is maximized, subject to the symmetries and constraints that are physically relevant. This is done in the framework of the powerful, non-perturbative, approach known as random-matrix theory.</description><issn>0094-243X</issn><isbn>0735402426</isbn><isbn>9780735402423</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotj8tOwzAURC0BEm1hwR94xS7lOnYcmx0qLSC1QqIg2FU3zg0Y5VFiF9G_JzxWszij0RzGzgRMBWh5IabCAiiTHbAx5DJTkKpUH7IRgFVJquTLMRuH8A6Q2jw3I1asI0YfondY82f8JL52GCP1vn3lvuWzN-wGyLEt-bUPXV9STyVf70OkJlzyhwF0DV9h7L2j8Ntb4Zdvdg2ft7HvtvsTdlRhHej0PyfsaTF_nN0my_ubu9nVMtkKo2NiwOjhlq6MQiqISpsJKLWzJMEBVsYY1FAVUmusrEb3I1cosA7THLWSE3b-t7vtu48dhbhpfHBU19hStwubwVhkWgj5Dfs9V_U</recordid><startdate>20050101</startdate><enddate>20050101</enddate><creator>Mello, P A</creator><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20050101</creationdate><title>Statistical Wave Scattering in Chaotic and Disordered Systems: Random Matrices and Maximum Entropy</title><author>Mello, P A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p186t-80860026f84aebeed9510d6c9e30c0af888a60fb366af96ac5402b409ca27a643</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mello, P A</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mello, P A</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Statistical Wave Scattering in Chaotic and Disordered Systems: Random Matrices and Maximum Entropy</atitle><btitle>Statistical Physics and Beyond</btitle><date>2005-01-01</date><risdate>2005</risdate><volume>757</volume><spage>29</spage><epage>36</epage><pages>29-36</pages><issn>0094-243X</issn><isbn>0735402426</isbn><isbn>9780735402423</isbn><abstract>We present a statistical theory of complex wave-interference phenomena, applicable to systems where the complexity in wave scattering may derive from the chaotic nature of the underlying classical dynamics, as in microwave cavities and quantum dots, or from the quenched randomness of scattering potentials, as in disordered conductors. The resulting interference pattern is so complex that only a statistical treatment is meaningful. We follow a maximum-entropy approach, in which Shannon's information entropy is maximized, subject to the symmetries and constraints that are physically relevant. This is done in the framework of the powerful, non-perturbative, approach known as random-matrix theory.</abstract><doi>10.1063/1.1900485</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof Statistical Physics and Beyond, 2005, Vol.757, p.29-36
issn 0094-243X
language eng
recordid cdi_proquest_miscellaneous_29715611
source AIP Journals Complete
title Statistical Wave Scattering in Chaotic and Disordered Systems: Random Matrices and Maximum Entropy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T03%3A13%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Statistical%20Wave%20Scattering%20in%20Chaotic%20and%20Disordered%20Systems:%20Random%20Matrices%20and%20Maximum%20Entropy&rft.btitle=Statistical%20Physics%20and%20Beyond&rft.au=Mello,%20P%20A&rft.date=2005-01-01&rft.volume=757&rft.spage=29&rft.epage=36&rft.pages=29-36&rft.issn=0094-243X&rft.isbn=0735402426&rft.isbn_list=9780735402423&rft_id=info:doi/10.1063/1.1900485&rft_dat=%3Cproquest%3E29715611%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29715611&rft_id=info:pmid/&rfr_iscdi=true