High-rate anaerobic hydrolysis and acidogenesis of sewage sludge in a modified upflow reactor
Continuous experiments were conducted to study the hydrolysis and acidogenesis of sewage sludge in an upflow reactor with an agitator and a gas-liquid-solid separator. Results of this study showed that 34-78% of volatile suspended solids (VSS) in sewage sludge was hydrolyzed at pH in the range 4.0-6...
Gespeichert in:
Veröffentlicht in: | Water science and technology 2003-01, Vol.48 (4), p.69-75 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 75 |
---|---|
container_issue | 4 |
container_start_page | 69 |
container_title | Water science and technology |
container_volume | 48 |
creator | YU, H.-Q ZHENG, X.-J HU, Z.-H GU, G.-W |
description | Continuous experiments were conducted to study the hydrolysis and acidogenesis of sewage sludge in an upflow reactor with an agitator and a gas-liquid-solid separator. Results of this study showed that 34-78% of volatile suspended solids (VSS) in sewage sludge was hydrolyzed at pH in the range 4.0-6.5, 35 degrees C and 4-24 hours of hydraulic retention time (HRT). About 31-65% of carbohydrate in sewage sludge, 20-45% of protein and 14-24% of lipid were acidified in this reactor. Hydrogen production was favored in lower pH and HRT, whereas methane production was encouraged at higher pH and HRT. Acetate, propionate, butyrate, and i-butyrate were the main aqueous acidogenic products. The distribution of these compounds in the effluent was more sensitive to pH, but was less sensitive to HRT. The maximu specific COD solubilization rate and specific volatile fatty acids production rate were 126 mg-COD/g-VSS x d and 102 mg-VFAIg-VSS x d, respectively. Compared with a CSTR, this modified upflow reactor was shown to be a more promising biosystem for the hydrolysis and acidogenesis of sewage sludge. |
doi_str_mv | 10.2166/wst.2003.0224 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29698185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1024647045</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-9010d9aec753b0a5994f980dc982d09c3bcd986adcc9d445d1fe96fc8f8dbb2a3</originalsourceid><addsrcrecordid>eNqN0strFEEQBvDGB2aNOXqVAYl4mbX6OV1HCcYIAS96lKGnH5sOs9Nr9w7L_vf2kIWAB-OpoPjx0VR_hLylsGZUqU-Hsl8zAL4GxsQzsqKIqsWOs-fkAjtNteAchUD5gqyAdbyljPEz8rqUewDouIBX5IwKyalgYkV-3cTNXZvN3jdmMj6nIdrm7uhyGo8llrp0jbHRpY2f_LJIoSn-YDa-KePs6ohTY5ptcjFE75p5F8Z0aLI3dp_yG_IymLH4i9M8Jz-vv_y4umlvv3_9dvX5trUSxL5FoODQeNtJPoCRiCKgBmdRMwdo-WAdamWcteiEkI4GjypYHbQbBmb4OfnwkLvL6ffsy77fxmL9OJrJp7n0DBXW08j_gEx3naRPww4ZUHwaUkUVSI0Vfvw3BCaU6EAsr3z_F71Pc57qBXuKy_9KrnRV7YOyOZWSfeh3OW5NPtaofulKX7vSL13pl65U_-6UOg9b7x71qQwVXJ6AKdaMIZvJxvLoJGcogfI_46TDxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1943395368</pqid></control><display><type>article</type><title>High-rate anaerobic hydrolysis and acidogenesis of sewage sludge in a modified upflow reactor</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>YU, H.-Q ; ZHENG, X.-J ; HU, Z.-H ; GU, G.-W</creator><contributor>Wilderer, P ; Moletta, R</contributor><creatorcontrib>YU, H.-Q ; ZHENG, X.-J ; HU, Z.-H ; GU, G.-W ; Wilderer, P ; Moletta, R</creatorcontrib><description>Continuous experiments were conducted to study the hydrolysis and acidogenesis of sewage sludge in an upflow reactor with an agitator and a gas-liquid-solid separator. Results of this study showed that 34-78% of volatile suspended solids (VSS) in sewage sludge was hydrolyzed at pH in the range 4.0-6.5, 35 degrees C and 4-24 hours of hydraulic retention time (HRT). About 31-65% of carbohydrate in sewage sludge, 20-45% of protein and 14-24% of lipid were acidified in this reactor. Hydrogen production was favored in lower pH and HRT, whereas methane production was encouraged at higher pH and HRT. Acetate, propionate, butyrate, and i-butyrate were the main aqueous acidogenic products. The distribution of these compounds in the effluent was more sensitive to pH, but was less sensitive to HRT. The maximu specific COD solubilization rate and specific volatile fatty acids production rate were 126 mg-COD/g-VSS x d and 102 mg-VFAIg-VSS x d, respectively. Compared with a CSTR, this modified upflow reactor was shown to be a more promising biosystem for the hydrolysis and acidogenesis of sewage sludge.</description><identifier>ISSN: 0273-1223</identifier><identifier>ISBN: 9781843394495</identifier><identifier>ISBN: 1843394499</identifier><identifier>EISSN: 1996-9732</identifier><identifier>DOI: 10.2166/wst.2003.0224</identifier><identifier>PMID: 14531424</identifier><identifier>CODEN: WSTED4</identifier><language>eng</language><publisher>London: IWA</publisher><subject>Acetates ; Acetic acid ; Acid production ; Acidification ; Applied sciences ; Bacteria, Anaerobic - physiology ; Biological and medical sciences ; Biological treatment of sewage sludges and wastes ; Bioreactors ; Biotechnology ; Carbohydrates ; Environment and pollution ; Exact sciences and technology ; Fatty acids ; Fatty Acids, Volatile - analysis ; Fatty Acids, Volatile - chemistry ; Fundamental and applied biological sciences. Psychology ; Hydraulic retention time ; Hydrogen production ; Hydrogen-Ion Concentration ; Hydrolysis ; Industrial applications and implications. Economical aspects ; Lipids ; Other industrial wastes. Sewage sludge ; Oxygen - analysis ; Oxygen - chemistry ; pH effects ; Pollution ; Propionic acid ; Proteins ; Reactors ; Retention time ; Sewage ; Sewage - chemistry ; Sewage disposal ; Sewage sludge ; Sludge ; Solubilization ; Suspended particulate matter ; Suspended solids ; Volatile fatty acids ; Waste Disposal, Fluid - methods ; Wastes</subject><ispartof>Water science and technology, 2003-01, Vol.48 (4), p.69-75</ispartof><rights>2004 INIST-CNRS</rights><rights>Copyright IWA Publishing Aug 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-9010d9aec753b0a5994f980dc982d09c3bcd986adcc9d445d1fe96fc8f8dbb2a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15329501$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14531424$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Wilderer, P</contributor><contributor>Moletta, R</contributor><creatorcontrib>YU, H.-Q</creatorcontrib><creatorcontrib>ZHENG, X.-J</creatorcontrib><creatorcontrib>HU, Z.-H</creatorcontrib><creatorcontrib>GU, G.-W</creatorcontrib><title>High-rate anaerobic hydrolysis and acidogenesis of sewage sludge in a modified upflow reactor</title><title>Water science and technology</title><addtitle>Water Sci Technol</addtitle><description>Continuous experiments were conducted to study the hydrolysis and acidogenesis of sewage sludge in an upflow reactor with an agitator and a gas-liquid-solid separator. Results of this study showed that 34-78% of volatile suspended solids (VSS) in sewage sludge was hydrolyzed at pH in the range 4.0-6.5, 35 degrees C and 4-24 hours of hydraulic retention time (HRT). About 31-65% of carbohydrate in sewage sludge, 20-45% of protein and 14-24% of lipid were acidified in this reactor. Hydrogen production was favored in lower pH and HRT, whereas methane production was encouraged at higher pH and HRT. Acetate, propionate, butyrate, and i-butyrate were the main aqueous acidogenic products. The distribution of these compounds in the effluent was more sensitive to pH, but was less sensitive to HRT. The maximu specific COD solubilization rate and specific volatile fatty acids production rate were 126 mg-COD/g-VSS x d and 102 mg-VFAIg-VSS x d, respectively. Compared with a CSTR, this modified upflow reactor was shown to be a more promising biosystem for the hydrolysis and acidogenesis of sewage sludge.</description><subject>Acetates</subject><subject>Acetic acid</subject><subject>Acid production</subject><subject>Acidification</subject><subject>Applied sciences</subject><subject>Bacteria, Anaerobic - physiology</subject><subject>Biological and medical sciences</subject><subject>Biological treatment of sewage sludges and wastes</subject><subject>Bioreactors</subject><subject>Biotechnology</subject><subject>Carbohydrates</subject><subject>Environment and pollution</subject><subject>Exact sciences and technology</subject><subject>Fatty acids</subject><subject>Fatty Acids, Volatile - analysis</subject><subject>Fatty Acids, Volatile - chemistry</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hydraulic retention time</subject><subject>Hydrogen production</subject><subject>Hydrogen-Ion Concentration</subject><subject>Hydrolysis</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Lipids</subject><subject>Other industrial wastes. Sewage sludge</subject><subject>Oxygen - analysis</subject><subject>Oxygen - chemistry</subject><subject>pH effects</subject><subject>Pollution</subject><subject>Propionic acid</subject><subject>Proteins</subject><subject>Reactors</subject><subject>Retention time</subject><subject>Sewage</subject><subject>Sewage - chemistry</subject><subject>Sewage disposal</subject><subject>Sewage sludge</subject><subject>Sludge</subject><subject>Solubilization</subject><subject>Suspended particulate matter</subject><subject>Suspended solids</subject><subject>Volatile fatty acids</subject><subject>Waste Disposal, Fluid - methods</subject><subject>Wastes</subject><issn>0273-1223</issn><issn>1996-9732</issn><isbn>9781843394495</isbn><isbn>1843394499</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqN0strFEEQBvDGB2aNOXqVAYl4mbX6OV1HCcYIAS96lKGnH5sOs9Nr9w7L_vf2kIWAB-OpoPjx0VR_hLylsGZUqU-Hsl8zAL4GxsQzsqKIqsWOs-fkAjtNteAchUD5gqyAdbyljPEz8rqUewDouIBX5IwKyalgYkV-3cTNXZvN3jdmMj6nIdrm7uhyGo8llrp0jbHRpY2f_LJIoSn-YDa-KePs6ohTY5ptcjFE75p5F8Z0aLI3dp_yG_IymLH4i9M8Jz-vv_y4umlvv3_9dvX5trUSxL5FoODQeNtJPoCRiCKgBmdRMwdo-WAdamWcteiEkI4GjypYHbQbBmb4OfnwkLvL6ffsy77fxmL9OJrJp7n0DBXW08j_gEx3naRPww4ZUHwaUkUVSI0Vfvw3BCaU6EAsr3z_F71Pc57qBXuKy_9KrnRV7YOyOZWSfeh3OW5NPtaofulKX7vSL13pl65U_-6UOg9b7x71qQwVXJ6AKdaMIZvJxvLoJGcogfI_46TDxA</recordid><startdate>20030101</startdate><enddate>20030101</enddate><creator>YU, H.-Q</creator><creator>ZHENG, X.-J</creator><creator>HU, Z.-H</creator><creator>GU, G.-W</creator><general>IWA</general><general>IWA Publishing</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>7TB</scope><scope>8BQ</scope><scope>JG9</scope></search><sort><creationdate>20030101</creationdate><title>High-rate anaerobic hydrolysis and acidogenesis of sewage sludge in a modified upflow reactor</title><author>YU, H.-Q ; ZHENG, X.-J ; HU, Z.-H ; GU, G.-W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-9010d9aec753b0a5994f980dc982d09c3bcd986adcc9d445d1fe96fc8f8dbb2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Acetates</topic><topic>Acetic acid</topic><topic>Acid production</topic><topic>Acidification</topic><topic>Applied sciences</topic><topic>Bacteria, Anaerobic - physiology</topic><topic>Biological and medical sciences</topic><topic>Biological treatment of sewage sludges and wastes</topic><topic>Bioreactors</topic><topic>Biotechnology</topic><topic>Carbohydrates</topic><topic>Environment and pollution</topic><topic>Exact sciences and technology</topic><topic>Fatty acids</topic><topic>Fatty Acids, Volatile - analysis</topic><topic>Fatty Acids, Volatile - chemistry</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hydraulic retention time</topic><topic>Hydrogen production</topic><topic>Hydrogen-Ion Concentration</topic><topic>Hydrolysis</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Lipids</topic><topic>Other industrial wastes. Sewage sludge</topic><topic>Oxygen - analysis</topic><topic>Oxygen - chemistry</topic><topic>pH effects</topic><topic>Pollution</topic><topic>Propionic acid</topic><topic>Proteins</topic><topic>Reactors</topic><topic>Retention time</topic><topic>Sewage</topic><topic>Sewage - chemistry</topic><topic>Sewage disposal</topic><topic>Sewage sludge</topic><topic>Sludge</topic><topic>Solubilization</topic><topic>Suspended particulate matter</topic><topic>Suspended solids</topic><topic>Volatile fatty acids</topic><topic>Waste Disposal, Fluid - methods</topic><topic>Wastes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>YU, H.-Q</creatorcontrib><creatorcontrib>ZHENG, X.-J</creatorcontrib><creatorcontrib>HU, Z.-H</creatorcontrib><creatorcontrib>GU, G.-W</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><jtitle>Water science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>YU, H.-Q</au><au>ZHENG, X.-J</au><au>HU, Z.-H</au><au>GU, G.-W</au><au>Wilderer, P</au><au>Moletta, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-rate anaerobic hydrolysis and acidogenesis of sewage sludge in a modified upflow reactor</atitle><jtitle>Water science and technology</jtitle><addtitle>Water Sci Technol</addtitle><date>2003-01-01</date><risdate>2003</risdate><volume>48</volume><issue>4</issue><spage>69</spage><epage>75</epage><pages>69-75</pages><issn>0273-1223</issn><eissn>1996-9732</eissn><isbn>9781843394495</isbn><isbn>1843394499</isbn><coden>WSTED4</coden><abstract>Continuous experiments were conducted to study the hydrolysis and acidogenesis of sewage sludge in an upflow reactor with an agitator and a gas-liquid-solid separator. Results of this study showed that 34-78% of volatile suspended solids (VSS) in sewage sludge was hydrolyzed at pH in the range 4.0-6.5, 35 degrees C and 4-24 hours of hydraulic retention time (HRT). About 31-65% of carbohydrate in sewage sludge, 20-45% of protein and 14-24% of lipid were acidified in this reactor. Hydrogen production was favored in lower pH and HRT, whereas methane production was encouraged at higher pH and HRT. Acetate, propionate, butyrate, and i-butyrate were the main aqueous acidogenic products. The distribution of these compounds in the effluent was more sensitive to pH, but was less sensitive to HRT. The maximu specific COD solubilization rate and specific volatile fatty acids production rate were 126 mg-COD/g-VSS x d and 102 mg-VFAIg-VSS x d, respectively. Compared with a CSTR, this modified upflow reactor was shown to be a more promising biosystem for the hydrolysis and acidogenesis of sewage sludge.</abstract><cop>London</cop><pub>IWA</pub><pmid>14531424</pmid><doi>10.2166/wst.2003.0224</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0273-1223 |
ispartof | Water science and technology, 2003-01, Vol.48 (4), p.69-75 |
issn | 0273-1223 1996-9732 |
language | eng |
recordid | cdi_proquest_miscellaneous_29698185 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Acetates Acetic acid Acid production Acidification Applied sciences Bacteria, Anaerobic - physiology Biological and medical sciences Biological treatment of sewage sludges and wastes Bioreactors Biotechnology Carbohydrates Environment and pollution Exact sciences and technology Fatty acids Fatty Acids, Volatile - analysis Fatty Acids, Volatile - chemistry Fundamental and applied biological sciences. Psychology Hydraulic retention time Hydrogen production Hydrogen-Ion Concentration Hydrolysis Industrial applications and implications. Economical aspects Lipids Other industrial wastes. Sewage sludge Oxygen - analysis Oxygen - chemistry pH effects Pollution Propionic acid Proteins Reactors Retention time Sewage Sewage - chemistry Sewage disposal Sewage sludge Sludge Solubilization Suspended particulate matter Suspended solids Volatile fatty acids Waste Disposal, Fluid - methods Wastes |
title | High-rate anaerobic hydrolysis and acidogenesis of sewage sludge in a modified upflow reactor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A54%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-rate%20anaerobic%20hydrolysis%20and%20acidogenesis%20of%20sewage%20sludge%20in%20a%20modified%20upflow%20reactor&rft.jtitle=Water%20science%20and%20technology&rft.au=YU,%20H.-Q&rft.date=2003-01-01&rft.volume=48&rft.issue=4&rft.spage=69&rft.epage=75&rft.pages=69-75&rft.issn=0273-1223&rft.eissn=1996-9732&rft.isbn=9781843394495&rft.isbn_list=1843394499&rft.coden=WSTED4&rft_id=info:doi/10.2166/wst.2003.0224&rft_dat=%3Cproquest_cross%3E1024647045%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1943395368&rft_id=info:pmid/14531424&rfr_iscdi=true |