Assessing the mechanism of fast‐cycling cancer‐associated mutations of Rac1 small Rho GTPase

Rho‐GTPases proteins function as molecular switches alternating from an active to an inactive state upon Guanosine triphosphate (GTP) binding and hydrolysis to Guanosine diphosphate (GDP). Among them, Rac subfamily regulates cell dynamics, being overexpressed in distinct cancer types. Notably, these...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Protein science 2024-04, Vol.33 (4), p.e4939-n/a
Hauptverfasser: Parise, Angela, Magistrato, Alessandra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 4
container_start_page e4939
container_title Protein science
container_volume 33
creator Parise, Angela
Magistrato, Alessandra
description Rho‐GTPases proteins function as molecular switches alternating from an active to an inactive state upon Guanosine triphosphate (GTP) binding and hydrolysis to Guanosine diphosphate (GDP). Among them, Rac subfamily regulates cell dynamics, being overexpressed in distinct cancer types. Notably, these proteins are object of frequent cancer‐associated mutations at Pro29 (P29S, P29L, and P29Q). To assess the impact of these mutations on Rac1 structure and function, we performed extensive all‐atom molecular dynamics simulations on wild‐type (wt) and oncogenic isoforms of this protein in GDP‐ and GTP‐bound states. Our results unprecedentedly elucidate that P29Q/S‐induced structural and dynamical perturbations of Rac1 core domain weaken the binding of the catalytic site Mg2+ ion, and reduce the GDP residence time within protein, enhancing the GDP/GTP exchange rate and Rac1 activity. This broadens our knowledge of the role of cancer‐associated mutations on small GTPases mechanism supplying valuable information for future drug discovery efforts targeting specific Rac1 isoforms.
doi_str_mv 10.1002/pro.4939
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2968923005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2987093023</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3109-8f603bf8fdcfbd68057605d4270595cc54187676967eefc581fe74edfa1e380c3</originalsourceid><addsrcrecordid>eNp1kNtKxDAQhoMouh7AJ5CCN95UJ02bJpcinkBYWRS8q9l04lbaRjstsnc-gs_ok5jVVUHwapiZj4-fn7FdDoccIDl66vxhqoVeYSOeSh0rLe9W2Qi05LESUm2wTaJHAEh5ItbZhlAZBDAfsftjIiSq2oeon2HUoJ2ZtqIm8i5yhvr31zc7t_Xib01rsQsHQ-RtZXoso2boTV_5lhb8xFgeUWPqOprMfHR-c20It9maMzXhznJusduz05uTi_hqfH55cnwVW8EhJHYSxNQpV1o3LaWCLJeQlWmSQ6Yza7OUq1zmUssc0dlMcYd5iqUzHIUCK7bYwZc3dPE8IPVFU5HFujYt-oGKREulEwGQBXT_D_roh64N6QKlctACEvErtJ0n6tAVT13VmG5ecCgWrYfdF4vWA7q3FA7TBssf8LvmAMRfwEtV4_xfUXE9GX8KPwB9xIzh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2987093023</pqid></control><display><type>article</type><title>Assessing the mechanism of fast‐cycling cancer‐associated mutations of Rac1 small Rho GTPase</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Parise, Angela ; Magistrato, Alessandra</creator><creatorcontrib>Parise, Angela ; Magistrato, Alessandra</creatorcontrib><description>Rho‐GTPases proteins function as molecular switches alternating from an active to an inactive state upon Guanosine triphosphate (GTP) binding and hydrolysis to Guanosine diphosphate (GDP). Among them, Rac subfamily regulates cell dynamics, being overexpressed in distinct cancer types. Notably, these proteins are object of frequent cancer‐associated mutations at Pro29 (P29S, P29L, and P29Q). To assess the impact of these mutations on Rac1 structure and function, we performed extensive all‐atom molecular dynamics simulations on wild‐type (wt) and oncogenic isoforms of this protein in GDP‐ and GTP‐bound states. Our results unprecedentedly elucidate that P29Q/S‐induced structural and dynamical perturbations of Rac1 core domain weaken the binding of the catalytic site Mg2+ ion, and reduce the GDP residence time within protein, enhancing the GDP/GTP exchange rate and Rac1 activity. This broadens our knowledge of the role of cancer‐associated mutations on small GTPases mechanism supplying valuable information for future drug discovery efforts targeting specific Rac1 isoforms.</description><identifier>ISSN: 0961-8368</identifier><identifier>ISSN: 1469-896X</identifier><identifier>EISSN: 1469-896X</identifier><identifier>DOI: 10.1002/pro.4939</identifier><identifier>PMID: 38501467</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Binding ; Cancer ; druggable cysteines ; fast‐cycling mutations in cancer ; Guanosine diphosphate ; Guanosine Diphosphate - chemistry ; Guanosine Diphosphate - metabolism ; Guanosine triphosphatases ; Guanosine triphosphate ; Guanosine Triphosphate - chemistry ; Guanosine Triphosphate - metabolism ; Guanosines ; Humans ; Isoforms ; Magnesium ; Molecular dynamics ; molecular dynamics simulations ; Molecular machines ; Mutation ; Neoplasms - genetics ; point mutations ; Protein Isoforms - metabolism ; Proteins ; Rac1 protein ; rho GTP-Binding Proteins - chemistry ; small‐GTPases ; Structure-function relationships</subject><ispartof>Protein science, 2024-04, Vol.33 (4), p.e4939-n/a</ispartof><rights>2024 The Protein Society.</rights><rights>2024 The Protein Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3109-8f603bf8fdcfbd68057605d4270595cc54187676967eefc581fe74edfa1e380c3</cites><orcidid>0000-0002-2003-1985 ; 0000-0003-3281-4677</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpro.4939$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpro.4939$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38501467$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Parise, Angela</creatorcontrib><creatorcontrib>Magistrato, Alessandra</creatorcontrib><title>Assessing the mechanism of fast‐cycling cancer‐associated mutations of Rac1 small Rho GTPase</title><title>Protein science</title><addtitle>Protein Sci</addtitle><description>Rho‐GTPases proteins function as molecular switches alternating from an active to an inactive state upon Guanosine triphosphate (GTP) binding and hydrolysis to Guanosine diphosphate (GDP). Among them, Rac subfamily regulates cell dynamics, being overexpressed in distinct cancer types. Notably, these proteins are object of frequent cancer‐associated mutations at Pro29 (P29S, P29L, and P29Q). To assess the impact of these mutations on Rac1 structure and function, we performed extensive all‐atom molecular dynamics simulations on wild‐type (wt) and oncogenic isoforms of this protein in GDP‐ and GTP‐bound states. Our results unprecedentedly elucidate that P29Q/S‐induced structural and dynamical perturbations of Rac1 core domain weaken the binding of the catalytic site Mg2+ ion, and reduce the GDP residence time within protein, enhancing the GDP/GTP exchange rate and Rac1 activity. This broadens our knowledge of the role of cancer‐associated mutations on small GTPases mechanism supplying valuable information for future drug discovery efforts targeting specific Rac1 isoforms.</description><subject>Binding</subject><subject>Cancer</subject><subject>druggable cysteines</subject><subject>fast‐cycling mutations in cancer</subject><subject>Guanosine diphosphate</subject><subject>Guanosine Diphosphate - chemistry</subject><subject>Guanosine Diphosphate - metabolism</subject><subject>Guanosine triphosphatases</subject><subject>Guanosine triphosphate</subject><subject>Guanosine Triphosphate - chemistry</subject><subject>Guanosine Triphosphate - metabolism</subject><subject>Guanosines</subject><subject>Humans</subject><subject>Isoforms</subject><subject>Magnesium</subject><subject>Molecular dynamics</subject><subject>molecular dynamics simulations</subject><subject>Molecular machines</subject><subject>Mutation</subject><subject>Neoplasms - genetics</subject><subject>point mutations</subject><subject>Protein Isoforms - metabolism</subject><subject>Proteins</subject><subject>Rac1 protein</subject><subject>rho GTP-Binding Proteins - chemistry</subject><subject>small‐GTPases</subject><subject>Structure-function relationships</subject><issn>0961-8368</issn><issn>1469-896X</issn><issn>1469-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kNtKxDAQhoMouh7AJ5CCN95UJ02bJpcinkBYWRS8q9l04lbaRjstsnc-gs_ok5jVVUHwapiZj4-fn7FdDoccIDl66vxhqoVeYSOeSh0rLe9W2Qi05LESUm2wTaJHAEh5ItbZhlAZBDAfsftjIiSq2oeon2HUoJ2ZtqIm8i5yhvr31zc7t_Xib01rsQsHQ-RtZXoso2boTV_5lhb8xFgeUWPqOprMfHR-c20It9maMzXhznJusduz05uTi_hqfH55cnwVW8EhJHYSxNQpV1o3LaWCLJeQlWmSQ6Yza7OUq1zmUssc0dlMcYd5iqUzHIUCK7bYwZc3dPE8IPVFU5HFujYt-oGKREulEwGQBXT_D_roh64N6QKlctACEvErtJ0n6tAVT13VmG5ecCgWrYfdF4vWA7q3FA7TBssf8LvmAMRfwEtV4_xfUXE9GX8KPwB9xIzh</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Parise, Angela</creator><creator>Magistrato, Alessandra</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T5</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2003-1985</orcidid><orcidid>https://orcid.org/0000-0003-3281-4677</orcidid></search><sort><creationdate>202404</creationdate><title>Assessing the mechanism of fast‐cycling cancer‐associated mutations of Rac1 small Rho GTPase</title><author>Parise, Angela ; Magistrato, Alessandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3109-8f603bf8fdcfbd68057605d4270595cc54187676967eefc581fe74edfa1e380c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Binding</topic><topic>Cancer</topic><topic>druggable cysteines</topic><topic>fast‐cycling mutations in cancer</topic><topic>Guanosine diphosphate</topic><topic>Guanosine Diphosphate - chemistry</topic><topic>Guanosine Diphosphate - metabolism</topic><topic>Guanosine triphosphatases</topic><topic>Guanosine triphosphate</topic><topic>Guanosine Triphosphate - chemistry</topic><topic>Guanosine Triphosphate - metabolism</topic><topic>Guanosines</topic><topic>Humans</topic><topic>Isoforms</topic><topic>Magnesium</topic><topic>Molecular dynamics</topic><topic>molecular dynamics simulations</topic><topic>Molecular machines</topic><topic>Mutation</topic><topic>Neoplasms - genetics</topic><topic>point mutations</topic><topic>Protein Isoforms - metabolism</topic><topic>Proteins</topic><topic>Rac1 protein</topic><topic>rho GTP-Binding Proteins - chemistry</topic><topic>small‐GTPases</topic><topic>Structure-function relationships</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parise, Angela</creatorcontrib><creatorcontrib>Magistrato, Alessandra</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Protein science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parise, Angela</au><au>Magistrato, Alessandra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessing the mechanism of fast‐cycling cancer‐associated mutations of Rac1 small Rho GTPase</atitle><jtitle>Protein science</jtitle><addtitle>Protein Sci</addtitle><date>2024-04</date><risdate>2024</risdate><volume>33</volume><issue>4</issue><spage>e4939</spage><epage>n/a</epage><pages>e4939-n/a</pages><issn>0961-8368</issn><issn>1469-896X</issn><eissn>1469-896X</eissn><abstract>Rho‐GTPases proteins function as molecular switches alternating from an active to an inactive state upon Guanosine triphosphate (GTP) binding and hydrolysis to Guanosine diphosphate (GDP). Among them, Rac subfamily regulates cell dynamics, being overexpressed in distinct cancer types. Notably, these proteins are object of frequent cancer‐associated mutations at Pro29 (P29S, P29L, and P29Q). To assess the impact of these mutations on Rac1 structure and function, we performed extensive all‐atom molecular dynamics simulations on wild‐type (wt) and oncogenic isoforms of this protein in GDP‐ and GTP‐bound states. Our results unprecedentedly elucidate that P29Q/S‐induced structural and dynamical perturbations of Rac1 core domain weaken the binding of the catalytic site Mg2+ ion, and reduce the GDP residence time within protein, enhancing the GDP/GTP exchange rate and Rac1 activity. This broadens our knowledge of the role of cancer‐associated mutations on small GTPases mechanism supplying valuable information for future drug discovery efforts targeting specific Rac1 isoforms.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>38501467</pmid><doi>10.1002/pro.4939</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2003-1985</orcidid><orcidid>https://orcid.org/0000-0003-3281-4677</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0961-8368
ispartof Protein science, 2024-04, Vol.33 (4), p.e4939-n/a
issn 0961-8368
1469-896X
1469-896X
language eng
recordid cdi_proquest_miscellaneous_2968923005
source MEDLINE; Access via Wiley Online Library
subjects Binding
Cancer
druggable cysteines
fast‐cycling mutations in cancer
Guanosine diphosphate
Guanosine Diphosphate - chemistry
Guanosine Diphosphate - metabolism
Guanosine triphosphatases
Guanosine triphosphate
Guanosine Triphosphate - chemistry
Guanosine Triphosphate - metabolism
Guanosines
Humans
Isoforms
Magnesium
Molecular dynamics
molecular dynamics simulations
Molecular machines
Mutation
Neoplasms - genetics
point mutations
Protein Isoforms - metabolism
Proteins
Rac1 protein
rho GTP-Binding Proteins - chemistry
small‐GTPases
Structure-function relationships
title Assessing the mechanism of fast‐cycling cancer‐associated mutations of Rac1 small Rho GTPase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A16%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessing%20the%20mechanism%20of%20fast%E2%80%90cycling%20cancer%E2%80%90associated%20mutations%20of%20Rac1%20small%20Rho%20GTPase&rft.jtitle=Protein%20science&rft.au=Parise,%20Angela&rft.date=2024-04&rft.volume=33&rft.issue=4&rft.spage=e4939&rft.epage=n/a&rft.pages=e4939-n/a&rft.issn=0961-8368&rft.eissn=1469-896X&rft_id=info:doi/10.1002/pro.4939&rft_dat=%3Cproquest_cross%3E2987093023%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2987093023&rft_id=info:pmid/38501467&rfr_iscdi=true