Assessing the mechanism of fast‐cycling cancer‐associated mutations of Rac1 small Rho GTPase
Rho‐GTPases proteins function as molecular switches alternating from an active to an inactive state upon Guanosine triphosphate (GTP) binding and hydrolysis to Guanosine diphosphate (GDP). Among them, Rac subfamily regulates cell dynamics, being overexpressed in distinct cancer types. Notably, these...
Gespeichert in:
Veröffentlicht in: | Protein science 2024-04, Vol.33 (4), p.e4939-n/a |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 4 |
container_start_page | e4939 |
container_title | Protein science |
container_volume | 33 |
creator | Parise, Angela Magistrato, Alessandra |
description | Rho‐GTPases proteins function as molecular switches alternating from an active to an inactive state upon Guanosine triphosphate (GTP) binding and hydrolysis to Guanosine diphosphate (GDP). Among them, Rac subfamily regulates cell dynamics, being overexpressed in distinct cancer types. Notably, these proteins are object of frequent cancer‐associated mutations at Pro29 (P29S, P29L, and P29Q). To assess the impact of these mutations on Rac1 structure and function, we performed extensive all‐atom molecular dynamics simulations on wild‐type (wt) and oncogenic isoforms of this protein in GDP‐ and GTP‐bound states. Our results unprecedentedly elucidate that P29Q/S‐induced structural and dynamical perturbations of Rac1 core domain weaken the binding of the catalytic site Mg2+ ion, and reduce the GDP residence time within protein, enhancing the GDP/GTP exchange rate and Rac1 activity. This broadens our knowledge of the role of cancer‐associated mutations on small GTPases mechanism supplying valuable information for future drug discovery efforts targeting specific Rac1 isoforms. |
doi_str_mv | 10.1002/pro.4939 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2968923005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2987093023</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3109-8f603bf8fdcfbd68057605d4270595cc54187676967eefc581fe74edfa1e380c3</originalsourceid><addsrcrecordid>eNp1kNtKxDAQhoMouh7AJ5CCN95UJ02bJpcinkBYWRS8q9l04lbaRjstsnc-gs_ok5jVVUHwapiZj4-fn7FdDoccIDl66vxhqoVeYSOeSh0rLe9W2Qi05LESUm2wTaJHAEh5ItbZhlAZBDAfsftjIiSq2oeon2HUoJ2ZtqIm8i5yhvr31zc7t_Xib01rsQsHQ-RtZXoso2boTV_5lhb8xFgeUWPqOprMfHR-c20It9maMzXhznJusduz05uTi_hqfH55cnwVW8EhJHYSxNQpV1o3LaWCLJeQlWmSQ6Yza7OUq1zmUssc0dlMcYd5iqUzHIUCK7bYwZc3dPE8IPVFU5HFujYt-oGKREulEwGQBXT_D_roh64N6QKlctACEvErtJ0n6tAVT13VmG5ecCgWrYfdF4vWA7q3FA7TBssf8LvmAMRfwEtV4_xfUXE9GX8KPwB9xIzh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2987093023</pqid></control><display><type>article</type><title>Assessing the mechanism of fast‐cycling cancer‐associated mutations of Rac1 small Rho GTPase</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Parise, Angela ; Magistrato, Alessandra</creator><creatorcontrib>Parise, Angela ; Magistrato, Alessandra</creatorcontrib><description>Rho‐GTPases proteins function as molecular switches alternating from an active to an inactive state upon Guanosine triphosphate (GTP) binding and hydrolysis to Guanosine diphosphate (GDP). Among them, Rac subfamily regulates cell dynamics, being overexpressed in distinct cancer types. Notably, these proteins are object of frequent cancer‐associated mutations at Pro29 (P29S, P29L, and P29Q). To assess the impact of these mutations on Rac1 structure and function, we performed extensive all‐atom molecular dynamics simulations on wild‐type (wt) and oncogenic isoforms of this protein in GDP‐ and GTP‐bound states. Our results unprecedentedly elucidate that P29Q/S‐induced structural and dynamical perturbations of Rac1 core domain weaken the binding of the catalytic site Mg2+ ion, and reduce the GDP residence time within protein, enhancing the GDP/GTP exchange rate and Rac1 activity. This broadens our knowledge of the role of cancer‐associated mutations on small GTPases mechanism supplying valuable information for future drug discovery efforts targeting specific Rac1 isoforms.</description><identifier>ISSN: 0961-8368</identifier><identifier>ISSN: 1469-896X</identifier><identifier>EISSN: 1469-896X</identifier><identifier>DOI: 10.1002/pro.4939</identifier><identifier>PMID: 38501467</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Binding ; Cancer ; druggable cysteines ; fast‐cycling mutations in cancer ; Guanosine diphosphate ; Guanosine Diphosphate - chemistry ; Guanosine Diphosphate - metabolism ; Guanosine triphosphatases ; Guanosine triphosphate ; Guanosine Triphosphate - chemistry ; Guanosine Triphosphate - metabolism ; Guanosines ; Humans ; Isoforms ; Magnesium ; Molecular dynamics ; molecular dynamics simulations ; Molecular machines ; Mutation ; Neoplasms - genetics ; point mutations ; Protein Isoforms - metabolism ; Proteins ; Rac1 protein ; rho GTP-Binding Proteins - chemistry ; small‐GTPases ; Structure-function relationships</subject><ispartof>Protein science, 2024-04, Vol.33 (4), p.e4939-n/a</ispartof><rights>2024 The Protein Society.</rights><rights>2024 The Protein Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3109-8f603bf8fdcfbd68057605d4270595cc54187676967eefc581fe74edfa1e380c3</cites><orcidid>0000-0002-2003-1985 ; 0000-0003-3281-4677</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpro.4939$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpro.4939$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38501467$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Parise, Angela</creatorcontrib><creatorcontrib>Magistrato, Alessandra</creatorcontrib><title>Assessing the mechanism of fast‐cycling cancer‐associated mutations of Rac1 small Rho GTPase</title><title>Protein science</title><addtitle>Protein Sci</addtitle><description>Rho‐GTPases proteins function as molecular switches alternating from an active to an inactive state upon Guanosine triphosphate (GTP) binding and hydrolysis to Guanosine diphosphate (GDP). Among them, Rac subfamily regulates cell dynamics, being overexpressed in distinct cancer types. Notably, these proteins are object of frequent cancer‐associated mutations at Pro29 (P29S, P29L, and P29Q). To assess the impact of these mutations on Rac1 structure and function, we performed extensive all‐atom molecular dynamics simulations on wild‐type (wt) and oncogenic isoforms of this protein in GDP‐ and GTP‐bound states. Our results unprecedentedly elucidate that P29Q/S‐induced structural and dynamical perturbations of Rac1 core domain weaken the binding of the catalytic site Mg2+ ion, and reduce the GDP residence time within protein, enhancing the GDP/GTP exchange rate and Rac1 activity. This broadens our knowledge of the role of cancer‐associated mutations on small GTPases mechanism supplying valuable information for future drug discovery efforts targeting specific Rac1 isoforms.</description><subject>Binding</subject><subject>Cancer</subject><subject>druggable cysteines</subject><subject>fast‐cycling mutations in cancer</subject><subject>Guanosine diphosphate</subject><subject>Guanosine Diphosphate - chemistry</subject><subject>Guanosine Diphosphate - metabolism</subject><subject>Guanosine triphosphatases</subject><subject>Guanosine triphosphate</subject><subject>Guanosine Triphosphate - chemistry</subject><subject>Guanosine Triphosphate - metabolism</subject><subject>Guanosines</subject><subject>Humans</subject><subject>Isoforms</subject><subject>Magnesium</subject><subject>Molecular dynamics</subject><subject>molecular dynamics simulations</subject><subject>Molecular machines</subject><subject>Mutation</subject><subject>Neoplasms - genetics</subject><subject>point mutations</subject><subject>Protein Isoforms - metabolism</subject><subject>Proteins</subject><subject>Rac1 protein</subject><subject>rho GTP-Binding Proteins - chemistry</subject><subject>small‐GTPases</subject><subject>Structure-function relationships</subject><issn>0961-8368</issn><issn>1469-896X</issn><issn>1469-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kNtKxDAQhoMouh7AJ5CCN95UJ02bJpcinkBYWRS8q9l04lbaRjstsnc-gs_ok5jVVUHwapiZj4-fn7FdDoccIDl66vxhqoVeYSOeSh0rLe9W2Qi05LESUm2wTaJHAEh5ItbZhlAZBDAfsftjIiSq2oeon2HUoJ2ZtqIm8i5yhvr31zc7t_Xib01rsQsHQ-RtZXoso2boTV_5lhb8xFgeUWPqOprMfHR-c20It9maMzXhznJusduz05uTi_hqfH55cnwVW8EhJHYSxNQpV1o3LaWCLJeQlWmSQ6Yza7OUq1zmUssc0dlMcYd5iqUzHIUCK7bYwZc3dPE8IPVFU5HFujYt-oGKREulEwGQBXT_D_roh64N6QKlctACEvErtJ0n6tAVT13VmG5ecCgWrYfdF4vWA7q3FA7TBssf8LvmAMRfwEtV4_xfUXE9GX8KPwB9xIzh</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Parise, Angela</creator><creator>Magistrato, Alessandra</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T5</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2003-1985</orcidid><orcidid>https://orcid.org/0000-0003-3281-4677</orcidid></search><sort><creationdate>202404</creationdate><title>Assessing the mechanism of fast‐cycling cancer‐associated mutations of Rac1 small Rho GTPase</title><author>Parise, Angela ; Magistrato, Alessandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3109-8f603bf8fdcfbd68057605d4270595cc54187676967eefc581fe74edfa1e380c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Binding</topic><topic>Cancer</topic><topic>druggable cysteines</topic><topic>fast‐cycling mutations in cancer</topic><topic>Guanosine diphosphate</topic><topic>Guanosine Diphosphate - chemistry</topic><topic>Guanosine Diphosphate - metabolism</topic><topic>Guanosine triphosphatases</topic><topic>Guanosine triphosphate</topic><topic>Guanosine Triphosphate - chemistry</topic><topic>Guanosine Triphosphate - metabolism</topic><topic>Guanosines</topic><topic>Humans</topic><topic>Isoforms</topic><topic>Magnesium</topic><topic>Molecular dynamics</topic><topic>molecular dynamics simulations</topic><topic>Molecular machines</topic><topic>Mutation</topic><topic>Neoplasms - genetics</topic><topic>point mutations</topic><topic>Protein Isoforms - metabolism</topic><topic>Proteins</topic><topic>Rac1 protein</topic><topic>rho GTP-Binding Proteins - chemistry</topic><topic>small‐GTPases</topic><topic>Structure-function relationships</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parise, Angela</creatorcontrib><creatorcontrib>Magistrato, Alessandra</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Protein science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parise, Angela</au><au>Magistrato, Alessandra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessing the mechanism of fast‐cycling cancer‐associated mutations of Rac1 small Rho GTPase</atitle><jtitle>Protein science</jtitle><addtitle>Protein Sci</addtitle><date>2024-04</date><risdate>2024</risdate><volume>33</volume><issue>4</issue><spage>e4939</spage><epage>n/a</epage><pages>e4939-n/a</pages><issn>0961-8368</issn><issn>1469-896X</issn><eissn>1469-896X</eissn><abstract>Rho‐GTPases proteins function as molecular switches alternating from an active to an inactive state upon Guanosine triphosphate (GTP) binding and hydrolysis to Guanosine diphosphate (GDP). Among them, Rac subfamily regulates cell dynamics, being overexpressed in distinct cancer types. Notably, these proteins are object of frequent cancer‐associated mutations at Pro29 (P29S, P29L, and P29Q). To assess the impact of these mutations on Rac1 structure and function, we performed extensive all‐atom molecular dynamics simulations on wild‐type (wt) and oncogenic isoforms of this protein in GDP‐ and GTP‐bound states. Our results unprecedentedly elucidate that P29Q/S‐induced structural and dynamical perturbations of Rac1 core domain weaken the binding of the catalytic site Mg2+ ion, and reduce the GDP residence time within protein, enhancing the GDP/GTP exchange rate and Rac1 activity. This broadens our knowledge of the role of cancer‐associated mutations on small GTPases mechanism supplying valuable information for future drug discovery efforts targeting specific Rac1 isoforms.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>38501467</pmid><doi>10.1002/pro.4939</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2003-1985</orcidid><orcidid>https://orcid.org/0000-0003-3281-4677</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0961-8368 |
ispartof | Protein science, 2024-04, Vol.33 (4), p.e4939-n/a |
issn | 0961-8368 1469-896X 1469-896X |
language | eng |
recordid | cdi_proquest_miscellaneous_2968923005 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Binding Cancer druggable cysteines fast‐cycling mutations in cancer Guanosine diphosphate Guanosine Diphosphate - chemistry Guanosine Diphosphate - metabolism Guanosine triphosphatases Guanosine triphosphate Guanosine Triphosphate - chemistry Guanosine Triphosphate - metabolism Guanosines Humans Isoforms Magnesium Molecular dynamics molecular dynamics simulations Molecular machines Mutation Neoplasms - genetics point mutations Protein Isoforms - metabolism Proteins Rac1 protein rho GTP-Binding Proteins - chemistry small‐GTPases Structure-function relationships |
title | Assessing the mechanism of fast‐cycling cancer‐associated mutations of Rac1 small Rho GTPase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A16%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessing%20the%20mechanism%20of%20fast%E2%80%90cycling%20cancer%E2%80%90associated%20mutations%20of%20Rac1%20small%20Rho%20GTPase&rft.jtitle=Protein%20science&rft.au=Parise,%20Angela&rft.date=2024-04&rft.volume=33&rft.issue=4&rft.spage=e4939&rft.epage=n/a&rft.pages=e4939-n/a&rft.issn=0961-8368&rft.eissn=1469-896X&rft_id=info:doi/10.1002/pro.4939&rft_dat=%3Cproquest_cross%3E2987093023%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2987093023&rft_id=info:pmid/38501467&rfr_iscdi=true |