The Use of Xenonucleic Acids Significantly Reduces the In Vivo Drift of Electrochemical Aptamer‐Based Sensors

Electrochemical aptamer‐based sensors support the high‐frequency, real‐time monitoring of molecules‐of‐interest in vivo. Achieving this requires methods for correcting the sensor drift seen during in vivo placements. While this correction ensures EAB sensor measurements remain accurate, as drift pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2024-05, Vol.63 (21), p.e202316678-n/a
Hauptverfasser: Leung, Kaylyn K., Gerson, Julian, Emmons, Nicole, Heemstra, Jennifer M., Kippin, Tod E., Plaxco, Kevin W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 21
container_start_page e202316678
container_title Angewandte Chemie International Edition
container_volume 63
creator Leung, Kaylyn K.
Gerson, Julian
Emmons, Nicole
Heemstra, Jennifer M.
Kippin, Tod E.
Plaxco, Kevin W.
description Electrochemical aptamer‐based sensors support the high‐frequency, real‐time monitoring of molecules‐of‐interest in vivo. Achieving this requires methods for correcting the sensor drift seen during in vivo placements. While this correction ensures EAB sensor measurements remain accurate, as drift progresses it reduces the signal‐to‐noise ratio and precision. Here, we show that enzymatic cleavage of the sensor's target‐recognizing DNA aptamer is a major source of this signal loss. To demonstrate this, we deployed a tobramycin‐detecting EAB sensor analog fabricated with the DNase‐resistant “xenonucleic acid” 2’O‐methyl‐RNA in a live rat. In contrast to the sensor employing the equivalent DNA aptamer, the 2’O‐methyl‐RNA aptamer sensor lost very little signal and had improved signal‐to‐noise. We further characterized the EAB sensor drift using unstructured DNA or 2’O‐methyl‐RNA oligonucleotides. While the two devices drift similarly in vitro in whole blood, the in vivo drift of the 2’O‐methyl‐RNA‐employing device is less compared to the DNA‐employing device. Studies of the electron transfer kinetics suggested that the greater drift of the latter sensor arises due to enzymatic DNA degradation. These findings, coupled with advances in the selection of aptamers employing XNA, suggest a means of improving EAB sensor stability when they are used to perform molecular monitoring in the living body. Electrochemical aptamer‐based (EAB) sensors made with DNA support high‐frequency, real‐time monitoring of molecules‐of‐interest in vivo. However, to use these sensors for long durations requires their signal to remain stable overtime. Here, we show that, in the living body, enzymatic cleavage of the sensor's DNA aptamer is a major source of signal loss and that this can be reduced by replacing it with an enzyme resistant xeno nucleic acid.
doi_str_mv 10.1002/anie.202316678
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2968920137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2968920137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2188-aabd97456065875e58fc8fb4a6575b9a2012a2663e476921bf22b4ecae4d98173</originalsourceid><addsrcrecordid>eNqFkctu1DAUhi1ERUthyxJZYsMmgy_xJcuhTGGkqki0RewsxzmhrhJ7sBOq2fEIPGOfpB5NKRIbVj6Wvv_T0fkRekXJghLC3tngYcEI41RKpZ-gIyoYrbhS_GmZa84rpQU9RM9zvim81kQ-Q4dci_KR5AjFy2vAVxlw7PE3CDHMbgDv8NL5LuML_z343jsbpmGLv0A3O8h4KpF1wF_9z4g_JN9Pu_BqADel6K5hLPyAl5vJjpDufv1-bzN0-AJCjim_QAe9HTK8fHiP0dXp6vLkU3X2-eP6ZHlWOUa1rqxtu0bVQhIptBIgdO9039ZWCiXaxjJCmWVScqiVbBhte8baGpyFums0VfwYvd17Nyn-mCFPZvTZwTDYAHHOhjVSN8XCd-ibf9CbOKdQtjOcCN7oWgleqMWecinmnKA3m-RHm7aGErOrwuyqMI9VlMDrB-3cjtA94n9uX4BmD9z6Abb_0Znl-Xr1V34PsvSVYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3053984753</pqid></control><display><type>article</type><title>The Use of Xenonucleic Acids Significantly Reduces the In Vivo Drift of Electrochemical Aptamer‐Based Sensors</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Leung, Kaylyn K. ; Gerson, Julian ; Emmons, Nicole ; Heemstra, Jennifer M. ; Kippin, Tod E. ; Plaxco, Kevin W.</creator><creatorcontrib>Leung, Kaylyn K. ; Gerson, Julian ; Emmons, Nicole ; Heemstra, Jennifer M. ; Kippin, Tod E. ; Plaxco, Kevin W.</creatorcontrib><description>Electrochemical aptamer‐based sensors support the high‐frequency, real‐time monitoring of molecules‐of‐interest in vivo. Achieving this requires methods for correcting the sensor drift seen during in vivo placements. While this correction ensures EAB sensor measurements remain accurate, as drift progresses it reduces the signal‐to‐noise ratio and precision. Here, we show that enzymatic cleavage of the sensor's target‐recognizing DNA aptamer is a major source of this signal loss. To demonstrate this, we deployed a tobramycin‐detecting EAB sensor analog fabricated with the DNase‐resistant “xenonucleic acid” 2’O‐methyl‐RNA in a live rat. In contrast to the sensor employing the equivalent DNA aptamer, the 2’O‐methyl‐RNA aptamer sensor lost very little signal and had improved signal‐to‐noise. We further characterized the EAB sensor drift using unstructured DNA or 2’O‐methyl‐RNA oligonucleotides. While the two devices drift similarly in vitro in whole blood, the in vivo drift of the 2’O‐methyl‐RNA‐employing device is less compared to the DNA‐employing device. Studies of the electron transfer kinetics suggested that the greater drift of the latter sensor arises due to enzymatic DNA degradation. These findings, coupled with advances in the selection of aptamers employing XNA, suggest a means of improving EAB sensor stability when they are used to perform molecular monitoring in the living body. Electrochemical aptamer‐based (EAB) sensors made with DNA support high‐frequency, real‐time monitoring of molecules‐of‐interest in vivo. However, to use these sensors for long durations requires their signal to remain stable overtime. Here, we show that, in the living body, enzymatic cleavage of the sensor's DNA aptamer is a major source of signal loss and that this can be reduced by replacing it with an enzyme resistant xeno nucleic acid.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>ISSN: 1521-3773</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202316678</identifier><identifier>PMID: 38500260</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Acid resistance ; Animals ; Aptamer Sensor ; Aptamers ; Aptamers, Nucleotide - chemistry ; Biosensing Techniques - methods ; Chemical sensors ; Deoxyribonuclease ; Deoxyribonucleic acid ; DNA ; Drift ; Electrochemical Sensor Design ; Electrochemical Techniques - methods ; Electrochemistry ; Electron transfer ; In vivo methods and tests ; Monitoring ; Non-natural Oligonucleotides ; Oligonucleotides ; Rats ; Ribonucleic acid ; RNA ; Sensor Engineering ; Sensors ; Tobramycin ; Tobramycin - analysis ; XNA Sensor</subject><ispartof>Angewandte Chemie International Edition, 2024-05, Vol.63 (21), p.e202316678-n/a</ispartof><rights>2024 Wiley-VCH GmbH</rights><rights>2024 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2188-aabd97456065875e58fc8fb4a6575b9a2012a2663e476921bf22b4ecae4d98173</citedby><cites>FETCH-LOGICAL-c2188-aabd97456065875e58fc8fb4a6575b9a2012a2663e476921bf22b4ecae4d98173</cites><orcidid>0000-0003-4772-8771</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202316678$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202316678$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38500260$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Leung, Kaylyn K.</creatorcontrib><creatorcontrib>Gerson, Julian</creatorcontrib><creatorcontrib>Emmons, Nicole</creatorcontrib><creatorcontrib>Heemstra, Jennifer M.</creatorcontrib><creatorcontrib>Kippin, Tod E.</creatorcontrib><creatorcontrib>Plaxco, Kevin W.</creatorcontrib><title>The Use of Xenonucleic Acids Significantly Reduces the In Vivo Drift of Electrochemical Aptamer‐Based Sensors</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Electrochemical aptamer‐based sensors support the high‐frequency, real‐time monitoring of molecules‐of‐interest in vivo. Achieving this requires methods for correcting the sensor drift seen during in vivo placements. While this correction ensures EAB sensor measurements remain accurate, as drift progresses it reduces the signal‐to‐noise ratio and precision. Here, we show that enzymatic cleavage of the sensor's target‐recognizing DNA aptamer is a major source of this signal loss. To demonstrate this, we deployed a tobramycin‐detecting EAB sensor analog fabricated with the DNase‐resistant “xenonucleic acid” 2’O‐methyl‐RNA in a live rat. In contrast to the sensor employing the equivalent DNA aptamer, the 2’O‐methyl‐RNA aptamer sensor lost very little signal and had improved signal‐to‐noise. We further characterized the EAB sensor drift using unstructured DNA or 2’O‐methyl‐RNA oligonucleotides. While the two devices drift similarly in vitro in whole blood, the in vivo drift of the 2’O‐methyl‐RNA‐employing device is less compared to the DNA‐employing device. Studies of the electron transfer kinetics suggested that the greater drift of the latter sensor arises due to enzymatic DNA degradation. These findings, coupled with advances in the selection of aptamers employing XNA, suggest a means of improving EAB sensor stability when they are used to perform molecular monitoring in the living body. Electrochemical aptamer‐based (EAB) sensors made with DNA support high‐frequency, real‐time monitoring of molecules‐of‐interest in vivo. However, to use these sensors for long durations requires their signal to remain stable overtime. Here, we show that, in the living body, enzymatic cleavage of the sensor's DNA aptamer is a major source of signal loss and that this can be reduced by replacing it with an enzyme resistant xeno nucleic acid.</description><subject>Acid resistance</subject><subject>Animals</subject><subject>Aptamer Sensor</subject><subject>Aptamers</subject><subject>Aptamers, Nucleotide - chemistry</subject><subject>Biosensing Techniques - methods</subject><subject>Chemical sensors</subject><subject>Deoxyribonuclease</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Drift</subject><subject>Electrochemical Sensor Design</subject><subject>Electrochemical Techniques - methods</subject><subject>Electrochemistry</subject><subject>Electron transfer</subject><subject>In vivo methods and tests</subject><subject>Monitoring</subject><subject>Non-natural Oligonucleotides</subject><subject>Oligonucleotides</subject><subject>Rats</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Sensor Engineering</subject><subject>Sensors</subject><subject>Tobramycin</subject><subject>Tobramycin - analysis</subject><subject>XNA Sensor</subject><issn>1433-7851</issn><issn>1521-3773</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctu1DAUhi1ERUthyxJZYsMmgy_xJcuhTGGkqki0RewsxzmhrhJ7sBOq2fEIPGOfpB5NKRIbVj6Wvv_T0fkRekXJghLC3tngYcEI41RKpZ-gIyoYrbhS_GmZa84rpQU9RM9zvim81kQ-Q4dci_KR5AjFy2vAVxlw7PE3CDHMbgDv8NL5LuML_z343jsbpmGLv0A3O8h4KpF1wF_9z4g_JN9Pu_BqADel6K5hLPyAl5vJjpDufv1-bzN0-AJCjim_QAe9HTK8fHiP0dXp6vLkU3X2-eP6ZHlWOUa1rqxtu0bVQhIptBIgdO9039ZWCiXaxjJCmWVScqiVbBhte8baGpyFums0VfwYvd17Nyn-mCFPZvTZwTDYAHHOhjVSN8XCd-ibf9CbOKdQtjOcCN7oWgleqMWecinmnKA3m-RHm7aGErOrwuyqMI9VlMDrB-3cjtA94n9uX4BmD9z6Abb_0Znl-Xr1V34PsvSVYA</recordid><startdate>20240521</startdate><enddate>20240521</enddate><creator>Leung, Kaylyn K.</creator><creator>Gerson, Julian</creator><creator>Emmons, Nicole</creator><creator>Heemstra, Jennifer M.</creator><creator>Kippin, Tod E.</creator><creator>Plaxco, Kevin W.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4772-8771</orcidid></search><sort><creationdate>20240521</creationdate><title>The Use of Xenonucleic Acids Significantly Reduces the In Vivo Drift of Electrochemical Aptamer‐Based Sensors</title><author>Leung, Kaylyn K. ; Gerson, Julian ; Emmons, Nicole ; Heemstra, Jennifer M. ; Kippin, Tod E. ; Plaxco, Kevin W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2188-aabd97456065875e58fc8fb4a6575b9a2012a2663e476921bf22b4ecae4d98173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acid resistance</topic><topic>Animals</topic><topic>Aptamer Sensor</topic><topic>Aptamers</topic><topic>Aptamers, Nucleotide - chemistry</topic><topic>Biosensing Techniques - methods</topic><topic>Chemical sensors</topic><topic>Deoxyribonuclease</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Drift</topic><topic>Electrochemical Sensor Design</topic><topic>Electrochemical Techniques - methods</topic><topic>Electrochemistry</topic><topic>Electron transfer</topic><topic>In vivo methods and tests</topic><topic>Monitoring</topic><topic>Non-natural Oligonucleotides</topic><topic>Oligonucleotides</topic><topic>Rats</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Sensor Engineering</topic><topic>Sensors</topic><topic>Tobramycin</topic><topic>Tobramycin - analysis</topic><topic>XNA Sensor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leung, Kaylyn K.</creatorcontrib><creatorcontrib>Gerson, Julian</creatorcontrib><creatorcontrib>Emmons, Nicole</creatorcontrib><creatorcontrib>Heemstra, Jennifer M.</creatorcontrib><creatorcontrib>Kippin, Tod E.</creatorcontrib><creatorcontrib>Plaxco, Kevin W.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leung, Kaylyn K.</au><au>Gerson, Julian</au><au>Emmons, Nicole</au><au>Heemstra, Jennifer M.</au><au>Kippin, Tod E.</au><au>Plaxco, Kevin W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Use of Xenonucleic Acids Significantly Reduces the In Vivo Drift of Electrochemical Aptamer‐Based Sensors</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2024-05-21</date><risdate>2024</risdate><volume>63</volume><issue>21</issue><spage>e202316678</spage><epage>n/a</epage><pages>e202316678-n/a</pages><issn>1433-7851</issn><issn>1521-3773</issn><eissn>1521-3773</eissn><abstract>Electrochemical aptamer‐based sensors support the high‐frequency, real‐time monitoring of molecules‐of‐interest in vivo. Achieving this requires methods for correcting the sensor drift seen during in vivo placements. While this correction ensures EAB sensor measurements remain accurate, as drift progresses it reduces the signal‐to‐noise ratio and precision. Here, we show that enzymatic cleavage of the sensor's target‐recognizing DNA aptamer is a major source of this signal loss. To demonstrate this, we deployed a tobramycin‐detecting EAB sensor analog fabricated with the DNase‐resistant “xenonucleic acid” 2’O‐methyl‐RNA in a live rat. In contrast to the sensor employing the equivalent DNA aptamer, the 2’O‐methyl‐RNA aptamer sensor lost very little signal and had improved signal‐to‐noise. We further characterized the EAB sensor drift using unstructured DNA or 2’O‐methyl‐RNA oligonucleotides. While the two devices drift similarly in vitro in whole blood, the in vivo drift of the 2’O‐methyl‐RNA‐employing device is less compared to the DNA‐employing device. Studies of the electron transfer kinetics suggested that the greater drift of the latter sensor arises due to enzymatic DNA degradation. These findings, coupled with advances in the selection of aptamers employing XNA, suggest a means of improving EAB sensor stability when they are used to perform molecular monitoring in the living body. Electrochemical aptamer‐based (EAB) sensors made with DNA support high‐frequency, real‐time monitoring of molecules‐of‐interest in vivo. However, to use these sensors for long durations requires their signal to remain stable overtime. Here, we show that, in the living body, enzymatic cleavage of the sensor's DNA aptamer is a major source of signal loss and that this can be reduced by replacing it with an enzyme resistant xeno nucleic acid.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38500260</pmid><doi>10.1002/anie.202316678</doi><tpages>7</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-4772-8771</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2024-05, Vol.63 (21), p.e202316678-n/a
issn 1433-7851
1521-3773
1521-3773
language eng
recordid cdi_proquest_miscellaneous_2968920137
source MEDLINE; Wiley Online Library All Journals
subjects Acid resistance
Animals
Aptamer Sensor
Aptamers
Aptamers, Nucleotide - chemistry
Biosensing Techniques - methods
Chemical sensors
Deoxyribonuclease
Deoxyribonucleic acid
DNA
Drift
Electrochemical Sensor Design
Electrochemical Techniques - methods
Electrochemistry
Electron transfer
In vivo methods and tests
Monitoring
Non-natural Oligonucleotides
Oligonucleotides
Rats
Ribonucleic acid
RNA
Sensor Engineering
Sensors
Tobramycin
Tobramycin - analysis
XNA Sensor
title The Use of Xenonucleic Acids Significantly Reduces the In Vivo Drift of Electrochemical Aptamer‐Based Sensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A58%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Use%20of%20Xenonucleic%20Acids%20Significantly%20Reduces%20the%20In%20Vivo%20Drift%20of%20Electrochemical%20Aptamer%E2%80%90Based%20Sensors&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Leung,%20Kaylyn%20K.&rft.date=2024-05-21&rft.volume=63&rft.issue=21&rft.spage=e202316678&rft.epage=n/a&rft.pages=e202316678-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202316678&rft_dat=%3Cproquest_cross%3E2968920137%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3053984753&rft_id=info:pmid/38500260&rfr_iscdi=true