Strong and stable red photoluminescence from porous silicon prepared by Fe-contaminated silicon
Strong red photoluminescence (PL) spectra appeared at porous silicon (PS) samples prepared by a chemical anodization of Fe-contaminated Si substrates. The Fe1000 sample with Fe contamination of 1000 ppb showed a ten times stronger red PL than that of the reference PS sample without any Fe contaminat...
Gespeichert in:
Veröffentlicht in: | Journal of crystal growth 2004-01, Vol.260 (3), p.394-399 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 399 |
---|---|
container_issue | 3 |
container_start_page | 394 |
container_title | Journal of crystal growth |
container_volume | 260 |
creator | Lee, D.Y. Park, J.W. Leem, J.Y. Kim, J.S. Kang, S.K. Son, J.S. Kang, H.B. Mun, Y.H. Lee, D.K. Kim, D.H. Bae, I.H. |
description | Strong red photoluminescence (PL) spectra appeared at porous silicon (PS) samples prepared by a chemical anodization of Fe-contaminated Si substrates. The Fe1000 sample with Fe contamination of 1000
ppb showed a ten times stronger red PL than that of the reference PS sample without any Fe contamination, and this sample also showed the higher thermal stability for PL spectra as compared with the reference PS sample. Furthermore, the PL intensity from the PS with Fe contamination is linearly proportional to the Fe-related trap concentrations of Si substrates obtained from DLTS. Especially, all the PS samples exhibit the same PL peak position regardless of Fe contamination concentrations, as compared with that of the reference PS. This means that there is no significant effect such as the variation of size distribution of nanocrystalline Si in PS layer formed on Fe-contaminated Si substrate. Based on the results of PL and DLTS, we found that the PL efficiency depends strongly on the Fe-related trap concentration in Si substrates. |
doi_str_mv | 10.1016/j.jcrysgro.2003.09.008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29681484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022024803017652</els_id><sourcerecordid>29681484</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-fb2f72973de9a3e4476608050a69d9b0e015ed0eb3c28d22cd86c4f85708b6923</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWD_-guSit10n2a_kpohVoeBBPYdsMltTtps12Qr996a04tHLBIbnnZk8hFwxyBmw-naVr0zYxmXwOQcocpA5gDgiMyaaIqsA-DGZpcoz4KU4JWcxrgBSksGMqLcp-GFJ9WBpnHTbIw1o6fjpJ99v1m7AaHAwSLvg13T0wW8ija53xg90DDjqHd5u6Ryz1Jp0iugptQ7MBTnpdB_x8vCek4_54_vDc7Z4fXp5uF9kpmjYlHUt7xoum8Ki1AWWZVPXIKACXUsrW0BgFVrAtjBcWM6NFbUpO1E1INpa8uKc3OznjsF_bTBOau3S5X2vB0wnKy5rwUpRJrDegyb4GAN2agxurcNWMVA7n2qlfn2qnU8FUiWfKXh92KCj0X0X9GBc_EtXRSmhZIm723OYvvvtMKho3E6hdQHNpKx3_636ARShkK8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29681484</pqid></control><display><type>article</type><title>Strong and stable red photoluminescence from porous silicon prepared by Fe-contaminated silicon</title><source>Access via ScienceDirect (Elsevier)</source><creator>Lee, D.Y. ; Park, J.W. ; Leem, J.Y. ; Kim, J.S. ; Kang, S.K. ; Son, J.S. ; Kang, H.B. ; Mun, Y.H. ; Lee, D.K. ; Kim, D.H. ; Bae, I.H.</creator><creatorcontrib>Lee, D.Y. ; Park, J.W. ; Leem, J.Y. ; Kim, J.S. ; Kang, S.K. ; Son, J.S. ; Kang, H.B. ; Mun, Y.H. ; Lee, D.K. ; Kim, D.H. ; Bae, I.H.</creatorcontrib><description>Strong red photoluminescence (PL) spectra appeared at porous silicon (PS) samples prepared by a chemical anodization of Fe-contaminated Si substrates. The Fe1000 sample with Fe contamination of 1000
ppb showed a ten times stronger red PL than that of the reference PS sample without any Fe contamination, and this sample also showed the higher thermal stability for PL spectra as compared with the reference PS sample. Furthermore, the PL intensity from the PS with Fe contamination is linearly proportional to the Fe-related trap concentrations of Si substrates obtained from DLTS. Especially, all the PS samples exhibit the same PL peak position regardless of Fe contamination concentrations, as compared with that of the reference PS. This means that there is no significant effect such as the variation of size distribution of nanocrystalline Si in PS layer formed on Fe-contaminated Si substrate. Based on the results of PL and DLTS, we found that the PL efficiency depends strongly on the Fe-related trap concentration in Si substrates.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2003.09.008</identifier><identifier>CODEN: JCRGAE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A1. Low dimensional structures ; A1. Nanostructures ; A2. Electrochemical growth ; B1. Nanomaterials ; B2. Semiconducting silicon ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Cross-disciplinary physics: materials science; rheology ; Elemental semiconductors ; Exact sciences and technology ; Materials science ; Nanocrystalline materials ; Nanoscale materials and structures: fabrication and characterization ; Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation ; Photoluminescence ; Physics</subject><ispartof>Journal of crystal growth, 2004-01, Vol.260 (3), p.394-399</ispartof><rights>2003 Elsevier B.V.</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-fb2f72973de9a3e4476608050a69d9b0e015ed0eb3c28d22cd86c4f85708b6923</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcrysgro.2003.09.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15349041$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, D.Y.</creatorcontrib><creatorcontrib>Park, J.W.</creatorcontrib><creatorcontrib>Leem, J.Y.</creatorcontrib><creatorcontrib>Kim, J.S.</creatorcontrib><creatorcontrib>Kang, S.K.</creatorcontrib><creatorcontrib>Son, J.S.</creatorcontrib><creatorcontrib>Kang, H.B.</creatorcontrib><creatorcontrib>Mun, Y.H.</creatorcontrib><creatorcontrib>Lee, D.K.</creatorcontrib><creatorcontrib>Kim, D.H.</creatorcontrib><creatorcontrib>Bae, I.H.</creatorcontrib><title>Strong and stable red photoluminescence from porous silicon prepared by Fe-contaminated silicon</title><title>Journal of crystal growth</title><description>Strong red photoluminescence (PL) spectra appeared at porous silicon (PS) samples prepared by a chemical anodization of Fe-contaminated Si substrates. The Fe1000 sample with Fe contamination of 1000
ppb showed a ten times stronger red PL than that of the reference PS sample without any Fe contamination, and this sample also showed the higher thermal stability for PL spectra as compared with the reference PS sample. Furthermore, the PL intensity from the PS with Fe contamination is linearly proportional to the Fe-related trap concentrations of Si substrates obtained from DLTS. Especially, all the PS samples exhibit the same PL peak position regardless of Fe contamination concentrations, as compared with that of the reference PS. This means that there is no significant effect such as the variation of size distribution of nanocrystalline Si in PS layer formed on Fe-contaminated Si substrate. Based on the results of PL and DLTS, we found that the PL efficiency depends strongly on the Fe-related trap concentration in Si substrates.</description><subject>A1. Low dimensional structures</subject><subject>A1. Nanostructures</subject><subject>A2. Electrochemical growth</subject><subject>B1. Nanomaterials</subject><subject>B2. Semiconducting silicon</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Elemental semiconductors</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Nanocrystalline materials</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</subject><subject>Photoluminescence</subject><subject>Physics</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWD_-guSit10n2a_kpohVoeBBPYdsMltTtps12Qr996a04tHLBIbnnZk8hFwxyBmw-naVr0zYxmXwOQcocpA5gDgiMyaaIqsA-DGZpcoz4KU4JWcxrgBSksGMqLcp-GFJ9WBpnHTbIw1o6fjpJ99v1m7AaHAwSLvg13T0wW8ija53xg90DDjqHd5u6Ryz1Jp0iugptQ7MBTnpdB_x8vCek4_54_vDc7Z4fXp5uF9kpmjYlHUt7xoum8Ki1AWWZVPXIKACXUsrW0BgFVrAtjBcWM6NFbUpO1E1INpa8uKc3OznjsF_bTBOau3S5X2vB0wnKy5rwUpRJrDegyb4GAN2agxurcNWMVA7n2qlfn2qnU8FUiWfKXh92KCj0X0X9GBc_EtXRSmhZIm723OYvvvtMKho3E6hdQHNpKx3_636ARShkK8</recordid><startdate>20040109</startdate><enddate>20040109</enddate><creator>Lee, D.Y.</creator><creator>Park, J.W.</creator><creator>Leem, J.Y.</creator><creator>Kim, J.S.</creator><creator>Kang, S.K.</creator><creator>Son, J.S.</creator><creator>Kang, H.B.</creator><creator>Mun, Y.H.</creator><creator>Lee, D.K.</creator><creator>Kim, D.H.</creator><creator>Bae, I.H.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20040109</creationdate><title>Strong and stable red photoluminescence from porous silicon prepared by Fe-contaminated silicon</title><author>Lee, D.Y. ; Park, J.W. ; Leem, J.Y. ; Kim, J.S. ; Kang, S.K. ; Son, J.S. ; Kang, H.B. ; Mun, Y.H. ; Lee, D.K. ; Kim, D.H. ; Bae, I.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-fb2f72973de9a3e4476608050a69d9b0e015ed0eb3c28d22cd86c4f85708b6923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>A1. Low dimensional structures</topic><topic>A1. Nanostructures</topic><topic>A2. Electrochemical growth</topic><topic>B1. Nanomaterials</topic><topic>B2. Semiconducting silicon</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Elemental semiconductors</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Nanocrystalline materials</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</topic><topic>Photoluminescence</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, D.Y.</creatorcontrib><creatorcontrib>Park, J.W.</creatorcontrib><creatorcontrib>Leem, J.Y.</creatorcontrib><creatorcontrib>Kim, J.S.</creatorcontrib><creatorcontrib>Kang, S.K.</creatorcontrib><creatorcontrib>Son, J.S.</creatorcontrib><creatorcontrib>Kang, H.B.</creatorcontrib><creatorcontrib>Mun, Y.H.</creatorcontrib><creatorcontrib>Lee, D.K.</creatorcontrib><creatorcontrib>Kim, D.H.</creatorcontrib><creatorcontrib>Bae, I.H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, D.Y.</au><au>Park, J.W.</au><au>Leem, J.Y.</au><au>Kim, J.S.</au><au>Kang, S.K.</au><au>Son, J.S.</au><au>Kang, H.B.</au><au>Mun, Y.H.</au><au>Lee, D.K.</au><au>Kim, D.H.</au><au>Bae, I.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong and stable red photoluminescence from porous silicon prepared by Fe-contaminated silicon</atitle><jtitle>Journal of crystal growth</jtitle><date>2004-01-09</date><risdate>2004</risdate><volume>260</volume><issue>3</issue><spage>394</spage><epage>399</epage><pages>394-399</pages><issn>0022-0248</issn><eissn>1873-5002</eissn><coden>JCRGAE</coden><abstract>Strong red photoluminescence (PL) spectra appeared at porous silicon (PS) samples prepared by a chemical anodization of Fe-contaminated Si substrates. The Fe1000 sample with Fe contamination of 1000
ppb showed a ten times stronger red PL than that of the reference PS sample without any Fe contamination, and this sample also showed the higher thermal stability for PL spectra as compared with the reference PS sample. Furthermore, the PL intensity from the PS with Fe contamination is linearly proportional to the Fe-related trap concentrations of Si substrates obtained from DLTS. Especially, all the PS samples exhibit the same PL peak position regardless of Fe contamination concentrations, as compared with that of the reference PS. This means that there is no significant effect such as the variation of size distribution of nanocrystalline Si in PS layer formed on Fe-contaminated Si substrate. Based on the results of PL and DLTS, we found that the PL efficiency depends strongly on the Fe-related trap concentration in Si substrates.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2003.09.008</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0248 |
ispartof | Journal of crystal growth, 2004-01, Vol.260 (3), p.394-399 |
issn | 0022-0248 1873-5002 |
language | eng |
recordid | cdi_proquest_miscellaneous_29681484 |
source | Access via ScienceDirect (Elsevier) |
subjects | A1. Low dimensional structures A1. Nanostructures A2. Electrochemical growth B1. Nanomaterials B2. Semiconducting silicon Condensed matter: electronic structure, electrical, magnetic, and optical properties Cross-disciplinary physics: materials science rheology Elemental semiconductors Exact sciences and technology Materials science Nanocrystalline materials Nanoscale materials and structures: fabrication and characterization Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation Photoluminescence Physics |
title | Strong and stable red photoluminescence from porous silicon prepared by Fe-contaminated silicon |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T02%3A10%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong%20and%20stable%20red%20photoluminescence%20from%20porous%20silicon%20prepared%20by%20Fe-contaminated%20silicon&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Lee,%20D.Y.&rft.date=2004-01-09&rft.volume=260&rft.issue=3&rft.spage=394&rft.epage=399&rft.pages=394-399&rft.issn=0022-0248&rft.eissn=1873-5002&rft.coden=JCRGAE&rft_id=info:doi/10.1016/j.jcrysgro.2003.09.008&rft_dat=%3Cproquest_cross%3E29681484%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29681484&rft_id=info:pmid/&rft_els_id=S0022024803017652&rfr_iscdi=true |