A study on functionally graded HA coatings processed using ion beam assisted deposition with in situ heat treatment
A new generation of calcium phosphate coatings with less than 1 μm thickness and graded crystallinity through the thickness of the film has been processed using ion beam assisted deposition (IBAD) and in situ heat treatment. Microstructural analysis of the film confirmed a gradual decrease of the gr...
Gespeichert in:
Veröffentlicht in: | Surface & coatings technology 2006-05, Vol.200 (20), p.6111-6116 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A new generation of calcium phosphate coatings with less than 1 μm thickness and graded crystallinity through the thickness of the film has been processed using ion beam assisted deposition (IBAD) and in situ heat treatment. Microstructural analysis of the film confirmed a gradual decrease of the grain size and crystallinity towards the surface, leading to nano-scale grains and eventually amorphous layer at the surface. The mechanical properties and adhesion bonding of the film have been evaluated using microscratch and nanoindentation tests and, in general, functionally graded HA films deposited using our IBAD system together with in situ heat treatment demonstrated higher modulus and hardness values than sputter-deposited films with the same thickness as well as those appearing in the literature for sintered HA. Scratch test results of both sets of samples revealed that crack formation is more common in sputter-deposited HA film than in the functionally graded HA film deposited using IBAD and in situ heat treatment. We anticipate that the functionally graded hydroxyapatite films will provide improved tissue–implant interfaces for orthopedic and dental implants. |
---|---|
ISSN: | 0257-8972 1879-3347 |
DOI: | 10.1016/j.surfcoat.2005.09.027 |