Flood estimation at ungauged sites using artificial neural networks

Artificial neural networks (ANNs) have been applied within the field of hydrological modelling for over a decade but relatively little attention has been paid to the use of these tools for flood estimation in ungauged catchments. This paper uses data from the Centre for Ecology and Hydrology's...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydrology (Amsterdam) 2006-03, Vol.319 (1), p.391-409
Hauptverfasser: Dawson, C.W., Abrahart, R.J., Shamseldin, A.Y., Wilby, R.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 409
container_issue 1
container_start_page 391
container_title Journal of hydrology (Amsterdam)
container_volume 319
creator Dawson, C.W.
Abrahart, R.J.
Shamseldin, A.Y.
Wilby, R.L.
description Artificial neural networks (ANNs) have been applied within the field of hydrological modelling for over a decade but relatively little attention has been paid to the use of these tools for flood estimation in ungauged catchments. This paper uses data from the Centre for Ecology and Hydrology's Flood Estimation Handbook (FEH) to predict T-year flood events and the index flood (the median of the annual maximum series) for 850 catchments across the UK. When compared with multiple regression models, ANNs provide improved flood estimates that can be used by engineers and hydrologists. Comparisons are also made with the empirical model presented in the FEH and a preliminary study is made of the spatial distribution of ANN residuals, highlighting the influence that geographical factors have on model performance.
doi_str_mv 10.1016/j.jhydrol.2005.07.032
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29673391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022169405003732</els_id><sourcerecordid>28807938</sourcerecordid><originalsourceid>FETCH-LOGICAL-a496t-b3ed5fd9ae6c0ccda74bf31804b433014f90a972650f073f08af2b2a8d02e6553</originalsourceid><addsrcrecordid>eNqFkTtPwzAUhS0EEqXwExCZ2BKuH4njCaGKAlIlBuhsOX4UlzQudgLqvyel7L3LXb5zH-cgdI2hwICru3Wx_tiZGNqCAJQF8AIoOUETXHOREw78FE0ACMlxJdg5ukhpDWNRyiZoNm9DMJlNvd-o3ocuU302dCs1rKzJku9tyobku1WmYu-d1161WWeH-Nf6nxA_0yU6c6pN9uq_T9Fy_vg-e84Xr08vs4dFrpio-ryh1pTOCGUrDVobxVnjKK6BNYxSwMwJUIKTqgQHnDqolSMNUbUBYquypFN0e5i7jeFrGE-WG5-0bVvV2TAkSUTFKRX4OFjXwAWtj4JYMELKmo5geQB1DClF6-Q2jobFncQg9yHItfwPQe5DkMDlGMKouznonApSraJPcvlGAI_vAi8x20--PxB2dO7b2yiT9rbT1vhodS9N8Ed2_AL6wZxE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19422583</pqid></control><display><type>article</type><title>Flood estimation at ungauged sites using artificial neural networks</title><source>Access via ScienceDirect (Elsevier)</source><creator>Dawson, C.W. ; Abrahart, R.J. ; Shamseldin, A.Y. ; Wilby, R.L.</creator><creatorcontrib>Dawson, C.W. ; Abrahart, R.J. ; Shamseldin, A.Y. ; Wilby, R.L.</creatorcontrib><description>Artificial neural networks (ANNs) have been applied within the field of hydrological modelling for over a decade but relatively little attention has been paid to the use of these tools for flood estimation in ungauged catchments. This paper uses data from the Centre for Ecology and Hydrology's Flood Estimation Handbook (FEH) to predict T-year flood events and the index flood (the median of the annual maximum series) for 850 catchments across the UK. When compared with multiple regression models, ANNs provide improved flood estimates that can be used by engineers and hydrologists. Comparisons are also made with the empirical model presented in the FEH and a preliminary study is made of the spatial distribution of ANN residuals, highlighting the influence that geographical factors have on model performance.</description><identifier>ISSN: 0022-1694</identifier><identifier>EISSN: 1879-2707</identifier><identifier>DOI: 10.1016/j.jhydrol.2005.07.032</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Artificial neural networks ; estimation ; Flood estimation ; floods ; Freshwater ; hydrologic models ; neural networks ; Ungauged catchments ; watershed hydrology ; watersheds</subject><ispartof>Journal of hydrology (Amsterdam), 2006-03, Vol.319 (1), p.391-409</ispartof><rights>2005 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a496t-b3ed5fd9ae6c0ccda74bf31804b433014f90a972650f073f08af2b2a8d02e6553</citedby><cites>FETCH-LOGICAL-a496t-b3ed5fd9ae6c0ccda74bf31804b433014f90a972650f073f08af2b2a8d02e6553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jhydrol.2005.07.032$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids></links><search><creatorcontrib>Dawson, C.W.</creatorcontrib><creatorcontrib>Abrahart, R.J.</creatorcontrib><creatorcontrib>Shamseldin, A.Y.</creatorcontrib><creatorcontrib>Wilby, R.L.</creatorcontrib><title>Flood estimation at ungauged sites using artificial neural networks</title><title>Journal of hydrology (Amsterdam)</title><description>Artificial neural networks (ANNs) have been applied within the field of hydrological modelling for over a decade but relatively little attention has been paid to the use of these tools for flood estimation in ungauged catchments. This paper uses data from the Centre for Ecology and Hydrology's Flood Estimation Handbook (FEH) to predict T-year flood events and the index flood (the median of the annual maximum series) for 850 catchments across the UK. When compared with multiple regression models, ANNs provide improved flood estimates that can be used by engineers and hydrologists. Comparisons are also made with the empirical model presented in the FEH and a preliminary study is made of the spatial distribution of ANN residuals, highlighting the influence that geographical factors have on model performance.</description><subject>Artificial neural networks</subject><subject>estimation</subject><subject>Flood estimation</subject><subject>floods</subject><subject>Freshwater</subject><subject>hydrologic models</subject><subject>neural networks</subject><subject>Ungauged catchments</subject><subject>watershed hydrology</subject><subject>watersheds</subject><issn>0022-1694</issn><issn>1879-2707</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkTtPwzAUhS0EEqXwExCZ2BKuH4njCaGKAlIlBuhsOX4UlzQudgLqvyel7L3LXb5zH-cgdI2hwICru3Wx_tiZGNqCAJQF8AIoOUETXHOREw78FE0ACMlxJdg5ukhpDWNRyiZoNm9DMJlNvd-o3ocuU302dCs1rKzJku9tyobku1WmYu-d1161WWeH-Nf6nxA_0yU6c6pN9uq_T9Fy_vg-e84Xr08vs4dFrpio-ryh1pTOCGUrDVobxVnjKK6BNYxSwMwJUIKTqgQHnDqolSMNUbUBYquypFN0e5i7jeFrGE-WG5-0bVvV2TAkSUTFKRX4OFjXwAWtj4JYMELKmo5geQB1DClF6-Q2jobFncQg9yHItfwPQe5DkMDlGMKouznonApSraJPcvlGAI_vAi8x20--PxB2dO7b2yiT9rbT1vhodS9N8Ed2_AL6wZxE</recordid><startdate>20060315</startdate><enddate>20060315</enddate><creator>Dawson, C.W.</creator><creator>Abrahart, R.J.</creator><creator>Shamseldin, A.Y.</creator><creator>Wilby, R.L.</creator><general>Elsevier B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20060315</creationdate><title>Flood estimation at ungauged sites using artificial neural networks</title><author>Dawson, C.W. ; Abrahart, R.J. ; Shamseldin, A.Y. ; Wilby, R.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a496t-b3ed5fd9ae6c0ccda74bf31804b433014f90a972650f073f08af2b2a8d02e6553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Artificial neural networks</topic><topic>estimation</topic><topic>Flood estimation</topic><topic>floods</topic><topic>Freshwater</topic><topic>hydrologic models</topic><topic>neural networks</topic><topic>Ungauged catchments</topic><topic>watershed hydrology</topic><topic>watersheds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dawson, C.W.</creatorcontrib><creatorcontrib>Abrahart, R.J.</creatorcontrib><creatorcontrib>Shamseldin, A.Y.</creatorcontrib><creatorcontrib>Wilby, R.L.</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of hydrology (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dawson, C.W.</au><au>Abrahart, R.J.</au><au>Shamseldin, A.Y.</au><au>Wilby, R.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flood estimation at ungauged sites using artificial neural networks</atitle><jtitle>Journal of hydrology (Amsterdam)</jtitle><date>2006-03-15</date><risdate>2006</risdate><volume>319</volume><issue>1</issue><spage>391</spage><epage>409</epage><pages>391-409</pages><issn>0022-1694</issn><eissn>1879-2707</eissn><abstract>Artificial neural networks (ANNs) have been applied within the field of hydrological modelling for over a decade but relatively little attention has been paid to the use of these tools for flood estimation in ungauged catchments. This paper uses data from the Centre for Ecology and Hydrology's Flood Estimation Handbook (FEH) to predict T-year flood events and the index flood (the median of the annual maximum series) for 850 catchments across the UK. When compared with multiple regression models, ANNs provide improved flood estimates that can be used by engineers and hydrologists. Comparisons are also made with the empirical model presented in the FEH and a preliminary study is made of the spatial distribution of ANN residuals, highlighting the influence that geographical factors have on model performance.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jhydrol.2005.07.032</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1694
ispartof Journal of hydrology (Amsterdam), 2006-03, Vol.319 (1), p.391-409
issn 0022-1694
1879-2707
language eng
recordid cdi_proquest_miscellaneous_29673391
source Access via ScienceDirect (Elsevier)
subjects Artificial neural networks
estimation
Flood estimation
floods
Freshwater
hydrologic models
neural networks
Ungauged catchments
watershed hydrology
watersheds
title Flood estimation at ungauged sites using artificial neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T20%3A07%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flood%20estimation%20at%20ungauged%20sites%20using%20artificial%20neural%20networks&rft.jtitle=Journal%20of%20hydrology%20(Amsterdam)&rft.au=Dawson,%20C.W.&rft.date=2006-03-15&rft.volume=319&rft.issue=1&rft.spage=391&rft.epage=409&rft.pages=391-409&rft.issn=0022-1694&rft.eissn=1879-2707&rft_id=info:doi/10.1016/j.jhydrol.2005.07.032&rft_dat=%3Cproquest_cross%3E28807938%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19422583&rft_id=info:pmid/&rft_els_id=S0022169405003732&rfr_iscdi=true