Effects of eutrophication on the horizontal transfer of antibiotic resistance genes in microalgal-bacterial symbiotic systems

Overloading of nutrients such as nitrogen causes eutrophication of freshwater bodies. The spread of antibiotic resistance genes (ARGs) poses a threat to ecosystems. However, studies on the enrichment and spread of ARGs from increased nitrogen loading in algal-bacterial symbiotic systems are limited....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental research 2024-06, Vol.251 (Pt 2), p.118692, Article 118692
Hauptverfasser: You, Ziqi, Wang, Ce, Yang, Xiaobin, Liu, Zikuo, Guan, Yueqiang, Mu, Jiandong, Shi, Huijuan, Zhao, Zhao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue Pt 2
container_start_page 118692
container_title Environmental research
container_volume 251
creator You, Ziqi
Wang, Ce
Yang, Xiaobin
Liu, Zikuo
Guan, Yueqiang
Mu, Jiandong
Shi, Huijuan
Zhao, Zhao
description Overloading of nutrients such as nitrogen causes eutrophication of freshwater bodies. The spread of antibiotic resistance genes (ARGs) poses a threat to ecosystems. However, studies on the enrichment and spread of ARGs from increased nitrogen loading in algal-bacterial symbiotic systems are limited. In this study, the transfer of extracellular kanamycin resistance (KR) genes from large (RP4) small (pEASY-T1) plasmids into the intracellular and extracellular DNA (iDNA, eDNA) of the inter-algal environment of Chlorella pyrenoidosa was investigated, along with the community structure of free-living (FL) and particle-attached (PA) bacteria under different nitrogen source concentrations (0–2.5 g/L KNO3). The results showed that KR gene abundance in the eDNA adsorbed on solid particles (D-eDNA) increased initially and then decreased with increasing nitrogen concentration, while the opposite was true for the rest of the free eDNA (E-eDNA). Medium nitrogen concentrations promoted the transfer of extracellular KR genes into the iDNA attached to algal microorganisms (A-iDNA), eDNA attached to algae (B-eDNA), and the iDNA of free microorganisms (C-iDNA); high nitrogen contributed to the transfer of KR genes into C-iDNA. The highest percentage of KR genes was found in B-eDNA with RP4 plasmid treatment (66.2%) and in C-iDNA with pEASY-T1 plasmid treatment (86.88%). In addition, dissolved oxygen (DO) significantly affected the bacterial PA and FL community compositions. Nephelometric turbidity units (NTU) reflected the abundance of ARGs in algae. Proteobacteria, Cyanobacteria, Bacteroidota, and Actinobacteriota were the main potential hosts of ARGs. These findings provide new insights into the distribution and dispersal of ARGs in the phytoplankton inter-algal environment. •Eutrophication affected extracellular antibiotic resistance gene transfer.•Eutrophication complicated the bacterial network structure.•Dissolved oxygen significantly affected bacterial community composition.•Turbidity affected the abundance of antibiotic resistance genes attached to algae.
doi_str_mv 10.1016/j.envres.2024.118692
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2967059675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013935124005966</els_id><sourcerecordid>2967059675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-733f890261f34f55d15cba6e08ef98f50468b0dce0f15d202337b19c8e88532e3</originalsourceid><addsrcrecordid>eNp9kUFrHCEUx6W0NJuk36CUOfYyWx1HVy-FEtKkEOilOYvjPLMuM7r1uYEt5LvXZTY9FkR58Pv7nj8J-cjomlEmv-zWEJ8z4LqjXb9mTEndvSErRrVsqRb8LVlRyniruWAX5BJxV0smOH1PLrjqNVdCrsjLrffgCjbJN3AoOe23wdkSUmzqKltotimHPykWOzUl24ge8gm2sYQhpBJcU4cIWGx00DxBBGxCbObgcrLTk53awboCOdQ8HudzBI9YYMZr8s7bCeHD-bwij99vf93ctw8_737cfHtoHZddaTece6VpJ5nnvRdiZMINVgJV4LXygvZSDXR0QD0TY_XB-WZg2ilQSvAO-BX5vNy7z-n3AbCYOaCDabIR0gFNp-WGirqJivYLWudHzODNPofZ5qNh1JzEm51ZxJuTeLOIr7FP5w6HYYbxX-jVdAW-LgDUdz4HyAZdgOpsDLl-gBlT-H-HvyaPmQI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2967059675</pqid></control><display><type>article</type><title>Effects of eutrophication on the horizontal transfer of antibiotic resistance genes in microalgal-bacterial symbiotic systems</title><source>Access via ScienceDirect (Elsevier)</source><creator>You, Ziqi ; Wang, Ce ; Yang, Xiaobin ; Liu, Zikuo ; Guan, Yueqiang ; Mu, Jiandong ; Shi, Huijuan ; Zhao, Zhao</creator><creatorcontrib>You, Ziqi ; Wang, Ce ; Yang, Xiaobin ; Liu, Zikuo ; Guan, Yueqiang ; Mu, Jiandong ; Shi, Huijuan ; Zhao, Zhao</creatorcontrib><description>Overloading of nutrients such as nitrogen causes eutrophication of freshwater bodies. The spread of antibiotic resistance genes (ARGs) poses a threat to ecosystems. However, studies on the enrichment and spread of ARGs from increased nitrogen loading in algal-bacterial symbiotic systems are limited. In this study, the transfer of extracellular kanamycin resistance (KR) genes from large (RP4) small (pEASY-T1) plasmids into the intracellular and extracellular DNA (iDNA, eDNA) of the inter-algal environment of Chlorella pyrenoidosa was investigated, along with the community structure of free-living (FL) and particle-attached (PA) bacteria under different nitrogen source concentrations (0–2.5 g/L KNO3). The results showed that KR gene abundance in the eDNA adsorbed on solid particles (D-eDNA) increased initially and then decreased with increasing nitrogen concentration, while the opposite was true for the rest of the free eDNA (E-eDNA). Medium nitrogen concentrations promoted the transfer of extracellular KR genes into the iDNA attached to algal microorganisms (A-iDNA), eDNA attached to algae (B-eDNA), and the iDNA of free microorganisms (C-iDNA); high nitrogen contributed to the transfer of KR genes into C-iDNA. The highest percentage of KR genes was found in B-eDNA with RP4 plasmid treatment (66.2%) and in C-iDNA with pEASY-T1 plasmid treatment (86.88%). In addition, dissolved oxygen (DO) significantly affected the bacterial PA and FL community compositions. Nephelometric turbidity units (NTU) reflected the abundance of ARGs in algae. Proteobacteria, Cyanobacteria, Bacteroidota, and Actinobacteriota were the main potential hosts of ARGs. These findings provide new insights into the distribution and dispersal of ARGs in the phytoplankton inter-algal environment. •Eutrophication affected extracellular antibiotic resistance gene transfer.•Eutrophication complicated the bacterial network structure.•Dissolved oxygen significantly affected bacterial community composition.•Turbidity affected the abundance of antibiotic resistance genes attached to algae.</description><identifier>ISSN: 0013-9351</identifier><identifier>ISSN: 1096-0953</identifier><identifier>EISSN: 1096-0953</identifier><identifier>DOI: 10.1016/j.envres.2024.118692</identifier><identifier>PMID: 38493856</identifier><language>eng</language><publisher>Netherlands: Elsevier Inc</publisher><subject>Antibiotic resistance genes ; Eutrophication ; Horizontal gene transfer ; Inter-algal environment ; Plasmid ; Water microorganism</subject><ispartof>Environmental research, 2024-06, Vol.251 (Pt 2), p.118692, Article 118692</ispartof><rights>2024 Elsevier Inc.</rights><rights>Copyright © 2024 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-733f890261f34f55d15cba6e08ef98f50468b0dce0f15d202337b19c8e88532e3</citedby><cites>FETCH-LOGICAL-c362t-733f890261f34f55d15cba6e08ef98f50468b0dce0f15d202337b19c8e88532e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.envres.2024.118692$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38493856$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>You, Ziqi</creatorcontrib><creatorcontrib>Wang, Ce</creatorcontrib><creatorcontrib>Yang, Xiaobin</creatorcontrib><creatorcontrib>Liu, Zikuo</creatorcontrib><creatorcontrib>Guan, Yueqiang</creatorcontrib><creatorcontrib>Mu, Jiandong</creatorcontrib><creatorcontrib>Shi, Huijuan</creatorcontrib><creatorcontrib>Zhao, Zhao</creatorcontrib><title>Effects of eutrophication on the horizontal transfer of antibiotic resistance genes in microalgal-bacterial symbiotic systems</title><title>Environmental research</title><addtitle>Environ Res</addtitle><description>Overloading of nutrients such as nitrogen causes eutrophication of freshwater bodies. The spread of antibiotic resistance genes (ARGs) poses a threat to ecosystems. However, studies on the enrichment and spread of ARGs from increased nitrogen loading in algal-bacterial symbiotic systems are limited. In this study, the transfer of extracellular kanamycin resistance (KR) genes from large (RP4) small (pEASY-T1) plasmids into the intracellular and extracellular DNA (iDNA, eDNA) of the inter-algal environment of Chlorella pyrenoidosa was investigated, along with the community structure of free-living (FL) and particle-attached (PA) bacteria under different nitrogen source concentrations (0–2.5 g/L KNO3). The results showed that KR gene abundance in the eDNA adsorbed on solid particles (D-eDNA) increased initially and then decreased with increasing nitrogen concentration, while the opposite was true for the rest of the free eDNA (E-eDNA). Medium nitrogen concentrations promoted the transfer of extracellular KR genes into the iDNA attached to algal microorganisms (A-iDNA), eDNA attached to algae (B-eDNA), and the iDNA of free microorganisms (C-iDNA); high nitrogen contributed to the transfer of KR genes into C-iDNA. The highest percentage of KR genes was found in B-eDNA with RP4 plasmid treatment (66.2%) and in C-iDNA with pEASY-T1 plasmid treatment (86.88%). In addition, dissolved oxygen (DO) significantly affected the bacterial PA and FL community compositions. Nephelometric turbidity units (NTU) reflected the abundance of ARGs in algae. Proteobacteria, Cyanobacteria, Bacteroidota, and Actinobacteriota were the main potential hosts of ARGs. These findings provide new insights into the distribution and dispersal of ARGs in the phytoplankton inter-algal environment. •Eutrophication affected extracellular antibiotic resistance gene transfer.•Eutrophication complicated the bacterial network structure.•Dissolved oxygen significantly affected bacterial community composition.•Turbidity affected the abundance of antibiotic resistance genes attached to algae.</description><subject>Antibiotic resistance genes</subject><subject>Eutrophication</subject><subject>Horizontal gene transfer</subject><subject>Inter-algal environment</subject><subject>Plasmid</subject><subject>Water microorganism</subject><issn>0013-9351</issn><issn>1096-0953</issn><issn>1096-0953</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kUFrHCEUx6W0NJuk36CUOfYyWx1HVy-FEtKkEOilOYvjPLMuM7r1uYEt5LvXZTY9FkR58Pv7nj8J-cjomlEmv-zWEJ8z4LqjXb9mTEndvSErRrVsqRb8LVlRyniruWAX5BJxV0smOH1PLrjqNVdCrsjLrffgCjbJN3AoOe23wdkSUmzqKltotimHPykWOzUl24ge8gm2sYQhpBJcU4cIWGx00DxBBGxCbObgcrLTk53awboCOdQ8HudzBI9YYMZr8s7bCeHD-bwij99vf93ctw8_737cfHtoHZddaTece6VpJ5nnvRdiZMINVgJV4LXygvZSDXR0QD0TY_XB-WZg2ilQSvAO-BX5vNy7z-n3AbCYOaCDabIR0gFNp-WGirqJivYLWudHzODNPofZ5qNh1JzEm51ZxJuTeLOIr7FP5w6HYYbxX-jVdAW-LgDUdz4HyAZdgOpsDLl-gBlT-H-HvyaPmQI</recordid><startdate>20240615</startdate><enddate>20240615</enddate><creator>You, Ziqi</creator><creator>Wang, Ce</creator><creator>Yang, Xiaobin</creator><creator>Liu, Zikuo</creator><creator>Guan, Yueqiang</creator><creator>Mu, Jiandong</creator><creator>Shi, Huijuan</creator><creator>Zhao, Zhao</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20240615</creationdate><title>Effects of eutrophication on the horizontal transfer of antibiotic resistance genes in microalgal-bacterial symbiotic systems</title><author>You, Ziqi ; Wang, Ce ; Yang, Xiaobin ; Liu, Zikuo ; Guan, Yueqiang ; Mu, Jiandong ; Shi, Huijuan ; Zhao, Zhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-733f890261f34f55d15cba6e08ef98f50468b0dce0f15d202337b19c8e88532e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Antibiotic resistance genes</topic><topic>Eutrophication</topic><topic>Horizontal gene transfer</topic><topic>Inter-algal environment</topic><topic>Plasmid</topic><topic>Water microorganism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>You, Ziqi</creatorcontrib><creatorcontrib>Wang, Ce</creatorcontrib><creatorcontrib>Yang, Xiaobin</creatorcontrib><creatorcontrib>Liu, Zikuo</creatorcontrib><creatorcontrib>Guan, Yueqiang</creatorcontrib><creatorcontrib>Mu, Jiandong</creatorcontrib><creatorcontrib>Shi, Huijuan</creatorcontrib><creatorcontrib>Zhao, Zhao</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>You, Ziqi</au><au>Wang, Ce</au><au>Yang, Xiaobin</au><au>Liu, Zikuo</au><au>Guan, Yueqiang</au><au>Mu, Jiandong</au><au>Shi, Huijuan</au><au>Zhao, Zhao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of eutrophication on the horizontal transfer of antibiotic resistance genes in microalgal-bacterial symbiotic systems</atitle><jtitle>Environmental research</jtitle><addtitle>Environ Res</addtitle><date>2024-06-15</date><risdate>2024</risdate><volume>251</volume><issue>Pt 2</issue><spage>118692</spage><pages>118692-</pages><artnum>118692</artnum><issn>0013-9351</issn><issn>1096-0953</issn><eissn>1096-0953</eissn><abstract>Overloading of nutrients such as nitrogen causes eutrophication of freshwater bodies. The spread of antibiotic resistance genes (ARGs) poses a threat to ecosystems. However, studies on the enrichment and spread of ARGs from increased nitrogen loading in algal-bacterial symbiotic systems are limited. In this study, the transfer of extracellular kanamycin resistance (KR) genes from large (RP4) small (pEASY-T1) plasmids into the intracellular and extracellular DNA (iDNA, eDNA) of the inter-algal environment of Chlorella pyrenoidosa was investigated, along with the community structure of free-living (FL) and particle-attached (PA) bacteria under different nitrogen source concentrations (0–2.5 g/L KNO3). The results showed that KR gene abundance in the eDNA adsorbed on solid particles (D-eDNA) increased initially and then decreased with increasing nitrogen concentration, while the opposite was true for the rest of the free eDNA (E-eDNA). Medium nitrogen concentrations promoted the transfer of extracellular KR genes into the iDNA attached to algal microorganisms (A-iDNA), eDNA attached to algae (B-eDNA), and the iDNA of free microorganisms (C-iDNA); high nitrogen contributed to the transfer of KR genes into C-iDNA. The highest percentage of KR genes was found in B-eDNA with RP4 plasmid treatment (66.2%) and in C-iDNA with pEASY-T1 plasmid treatment (86.88%). In addition, dissolved oxygen (DO) significantly affected the bacterial PA and FL community compositions. Nephelometric turbidity units (NTU) reflected the abundance of ARGs in algae. Proteobacteria, Cyanobacteria, Bacteroidota, and Actinobacteriota were the main potential hosts of ARGs. These findings provide new insights into the distribution and dispersal of ARGs in the phytoplankton inter-algal environment. •Eutrophication affected extracellular antibiotic resistance gene transfer.•Eutrophication complicated the bacterial network structure.•Dissolved oxygen significantly affected bacterial community composition.•Turbidity affected the abundance of antibiotic resistance genes attached to algae.</abstract><cop>Netherlands</cop><pub>Elsevier Inc</pub><pmid>38493856</pmid><doi>10.1016/j.envres.2024.118692</doi></addata></record>
fulltext fulltext
identifier ISSN: 0013-9351
ispartof Environmental research, 2024-06, Vol.251 (Pt 2), p.118692, Article 118692
issn 0013-9351
1096-0953
1096-0953
language eng
recordid cdi_proquest_miscellaneous_2967059675
source Access via ScienceDirect (Elsevier)
subjects Antibiotic resistance genes
Eutrophication
Horizontal gene transfer
Inter-algal environment
Plasmid
Water microorganism
title Effects of eutrophication on the horizontal transfer of antibiotic resistance genes in microalgal-bacterial symbiotic systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T15%3A12%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20eutrophication%20on%20the%20horizontal%20transfer%20of%20antibiotic%20resistance%20genes%20in%20microalgal-bacterial%20symbiotic%20systems&rft.jtitle=Environmental%20research&rft.au=You,%20Ziqi&rft.date=2024-06-15&rft.volume=251&rft.issue=Pt%202&rft.spage=118692&rft.pages=118692-&rft.artnum=118692&rft.issn=0013-9351&rft.eissn=1096-0953&rft_id=info:doi/10.1016/j.envres.2024.118692&rft_dat=%3Cproquest_cross%3E2967059675%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2967059675&rft_id=info:pmid/38493856&rft_els_id=S0013935124005966&rfr_iscdi=true