RSAFormer: A method of polyp segmentation with region self-attention transformer

Colonoscopy has attached great importance to early screening and clinical diagnosis of colon cancer. It remains a challenging task to achieve fine segmentation of polyps. However, existing State-of-the-art models still have limited segmentation ability due to the lack of clear and highly similar bou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in biology and medicine 2024-04, Vol.172, p.108268, Article 108268
Hauptverfasser: Yin, Xuehui, Zeng, Jun, Hou, Tianxiao, Tang, Chao, Gan, Chenquan, Jain, Deepak Kumar, García, Salvador
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 108268
container_title Computers in biology and medicine
container_volume 172
creator Yin, Xuehui
Zeng, Jun
Hou, Tianxiao
Tang, Chao
Gan, Chenquan
Jain, Deepak Kumar
García, Salvador
description Colonoscopy has attached great importance to early screening and clinical diagnosis of colon cancer. It remains a challenging task to achieve fine segmentation of polyps. However, existing State-of-the-art models still have limited segmentation ability due to the lack of clear and highly similar boundaries between normal tissue and polyps. To deal with this problem, we propose a region self-attention enhancement network (RSAFormer) with a transformer encoder to capture more robust features. Different from other excellent methods, RSAFormer uniquely employs a dual decoder structure to generate various feature maps. Contrasting with traditional methods that typically employ a single decoder, it offers more flexibility and detail in feature extraction. RSAFormer also introduces a region self-attention enhancement module (RSA) to acquire more accurate feature information and foster a stronger interplay between low-level and high-level features. This module enhances uncertain areas to extract more precise boundary information, these areas being signified by regional context. Extensive experiments were conducted on five prevalent polyp datasets to demonstrate RSAFormer’s proficiency. It achieves 92.2% and 83.5% mean Dice on Kvasir and ETIS, respectively, which outperformed most of the state-of-the-art models. •A region self-attention enhancement network (RSAFormer) is proposed.•RSAFormer uniquely uses a dual decoder structure to generate various feature maps.•A novel region self-attention enhancement (RSA) module is proposed.
doi_str_mv 10.1016/j.compbiomed.2024.108268
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2967059390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482524003524</els_id><sourcerecordid>2967059390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c262t-ba51bb746feb5d909662e54fb9604b4d9cec7d9ba404ed78c6d4bad6a5bb56e13</originalsourceid><addsrcrecordid>eNqFkEtv1DAQgC0EokvhL6BIXLhkmSS2Y3NbKgpIlagKnC0_Jq1XSRxsL1X_PQ7bCqmXnjye-eahj5CqgW0DDf-w39owLcaHCd22hZaWtGi5eEY2jehlDayjz8kGoIGaipadkFcp7QGAQgcvyUknqOyYFBtyefVjdx7ihPFjtasmzDfBVWGoljDeLVXC6wnnrLMPc3Xr800V8XqNE45DrXMuxfWbo57T8G_Ma_Ji0GPCN_fvKfl1_vnn2df64vuXb2e7i9q2vM210awxpqd8QMOcBMl5i4wORnKghjpp0fZOGk2BouuF5Y4a7bhmxjCOTXdK3h_nLjH8PmDKavLJ4jjqGcMhqVbyHpjsJBT03SN0Hw5xLtcVqu9oI2TPCyWOlI0hpYiDWqKfdLxTDajVutqr_9bVal0drZfWt_cLDmatPTQ-aC7ApyOAxcgfj1El63G26HxEm5UL_uktfwGDJZkM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2973418976</pqid></control><display><type>article</type><title>RSAFormer: A method of polyp segmentation with region self-attention transformer</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Yin, Xuehui ; Zeng, Jun ; Hou, Tianxiao ; Tang, Chao ; Gan, Chenquan ; Jain, Deepak Kumar ; García, Salvador</creator><creatorcontrib>Yin, Xuehui ; Zeng, Jun ; Hou, Tianxiao ; Tang, Chao ; Gan, Chenquan ; Jain, Deepak Kumar ; García, Salvador</creatorcontrib><description>Colonoscopy has attached great importance to early screening and clinical diagnosis of colon cancer. It remains a challenging task to achieve fine segmentation of polyps. However, existing State-of-the-art models still have limited segmentation ability due to the lack of clear and highly similar boundaries between normal tissue and polyps. To deal with this problem, we propose a region self-attention enhancement network (RSAFormer) with a transformer encoder to capture more robust features. Different from other excellent methods, RSAFormer uniquely employs a dual decoder structure to generate various feature maps. Contrasting with traditional methods that typically employ a single decoder, it offers more flexibility and detail in feature extraction. RSAFormer also introduces a region self-attention enhancement module (RSA) to acquire more accurate feature information and foster a stronger interplay between low-level and high-level features. This module enhances uncertain areas to extract more precise boundary information, these areas being signified by regional context. Extensive experiments were conducted on five prevalent polyp datasets to demonstrate RSAFormer’s proficiency. It achieves 92.2% and 83.5% mean Dice on Kvasir and ETIS, respectively, which outperformed most of the state-of-the-art models. •A region self-attention enhancement network (RSAFormer) is proposed.•RSAFormer uniquely uses a dual decoder structure to generate various feature maps.•A novel region self-attention enhancement (RSA) module is proposed.</description><identifier>ISSN: 0010-4825</identifier><identifier>ISSN: 1879-0534</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2024.108268</identifier><identifier>PMID: 38493598</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Colon cancer ; Colonoscopy ; Colorectal cancer ; Feature extraction ; Feature maps ; Image Processing, Computer-Assisted ; Information processing ; Modules ; Polyp segmentation ; Polyps ; Region self-attention ; Segmentation ; Transformer ; Transformers ; Uncertainty</subject><ispartof>Computers in biology and medicine, 2024-04, Vol.172, p.108268, Article 108268</ispartof><rights>2024 Elsevier Ltd</rights><rights>Copyright © 2024 Elsevier Ltd. All rights reserved.</rights><rights>2024. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c262t-ba51bb746feb5d909662e54fb9604b4d9cec7d9ba404ed78c6d4bad6a5bb56e13</cites><orcidid>0009-0002-9822-1997 ; 0009-0009-7019-9303 ; 0000-0002-0453-5630</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010482524003524$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38493598$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yin, Xuehui</creatorcontrib><creatorcontrib>Zeng, Jun</creatorcontrib><creatorcontrib>Hou, Tianxiao</creatorcontrib><creatorcontrib>Tang, Chao</creatorcontrib><creatorcontrib>Gan, Chenquan</creatorcontrib><creatorcontrib>Jain, Deepak Kumar</creatorcontrib><creatorcontrib>García, Salvador</creatorcontrib><title>RSAFormer: A method of polyp segmentation with region self-attention transformer</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>Colonoscopy has attached great importance to early screening and clinical diagnosis of colon cancer. It remains a challenging task to achieve fine segmentation of polyps. However, existing State-of-the-art models still have limited segmentation ability due to the lack of clear and highly similar boundaries between normal tissue and polyps. To deal with this problem, we propose a region self-attention enhancement network (RSAFormer) with a transformer encoder to capture more robust features. Different from other excellent methods, RSAFormer uniquely employs a dual decoder structure to generate various feature maps. Contrasting with traditional methods that typically employ a single decoder, it offers more flexibility and detail in feature extraction. RSAFormer also introduces a region self-attention enhancement module (RSA) to acquire more accurate feature information and foster a stronger interplay between low-level and high-level features. This module enhances uncertain areas to extract more precise boundary information, these areas being signified by regional context. Extensive experiments were conducted on five prevalent polyp datasets to demonstrate RSAFormer’s proficiency. It achieves 92.2% and 83.5% mean Dice on Kvasir and ETIS, respectively, which outperformed most of the state-of-the-art models. •A region self-attention enhancement network (RSAFormer) is proposed.•RSAFormer uniquely uses a dual decoder structure to generate various feature maps.•A novel region self-attention enhancement (RSA) module is proposed.</description><subject>Colon cancer</subject><subject>Colonoscopy</subject><subject>Colorectal cancer</subject><subject>Feature extraction</subject><subject>Feature maps</subject><subject>Image Processing, Computer-Assisted</subject><subject>Information processing</subject><subject>Modules</subject><subject>Polyp segmentation</subject><subject>Polyps</subject><subject>Region self-attention</subject><subject>Segmentation</subject><subject>Transformer</subject><subject>Transformers</subject><subject>Uncertainty</subject><issn>0010-4825</issn><issn>1879-0534</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEtv1DAQgC0EokvhL6BIXLhkmSS2Y3NbKgpIlagKnC0_Jq1XSRxsL1X_PQ7bCqmXnjye-eahj5CqgW0DDf-w39owLcaHCd22hZaWtGi5eEY2jehlDayjz8kGoIGaipadkFcp7QGAQgcvyUknqOyYFBtyefVjdx7ihPFjtasmzDfBVWGoljDeLVXC6wnnrLMPc3Xr800V8XqNE45DrXMuxfWbo57T8G_Ma_Ji0GPCN_fvKfl1_vnn2df64vuXb2e7i9q2vM210awxpqd8QMOcBMl5i4wORnKghjpp0fZOGk2BouuF5Y4a7bhmxjCOTXdK3h_nLjH8PmDKavLJ4jjqGcMhqVbyHpjsJBT03SN0Hw5xLtcVqu9oI2TPCyWOlI0hpYiDWqKfdLxTDajVutqr_9bVal0drZfWt_cLDmatPTQ-aC7ApyOAxcgfj1El63G26HxEm5UL_uktfwGDJZkM</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Yin, Xuehui</creator><creator>Zeng, Jun</creator><creator>Hou, Tianxiao</creator><creator>Tang, Chao</creator><creator>Gan, Chenquan</creator><creator>Jain, Deepak Kumar</creator><creator>García, Salvador</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0002-9822-1997</orcidid><orcidid>https://orcid.org/0009-0009-7019-9303</orcidid><orcidid>https://orcid.org/0000-0002-0453-5630</orcidid></search><sort><creationdate>202404</creationdate><title>RSAFormer: A method of polyp segmentation with region self-attention transformer</title><author>Yin, Xuehui ; Zeng, Jun ; Hou, Tianxiao ; Tang, Chao ; Gan, Chenquan ; Jain, Deepak Kumar ; García, Salvador</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c262t-ba51bb746feb5d909662e54fb9604b4d9cec7d9ba404ed78c6d4bad6a5bb56e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Colon cancer</topic><topic>Colonoscopy</topic><topic>Colorectal cancer</topic><topic>Feature extraction</topic><topic>Feature maps</topic><topic>Image Processing, Computer-Assisted</topic><topic>Information processing</topic><topic>Modules</topic><topic>Polyp segmentation</topic><topic>Polyps</topic><topic>Region self-attention</topic><topic>Segmentation</topic><topic>Transformer</topic><topic>Transformers</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Xuehui</creatorcontrib><creatorcontrib>Zeng, Jun</creatorcontrib><creatorcontrib>Hou, Tianxiao</creatorcontrib><creatorcontrib>Tang, Chao</creatorcontrib><creatorcontrib>Gan, Chenquan</creatorcontrib><creatorcontrib>Jain, Deepak Kumar</creatorcontrib><creatorcontrib>García, Salvador</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Xuehui</au><au>Zeng, Jun</au><au>Hou, Tianxiao</au><au>Tang, Chao</au><au>Gan, Chenquan</au><au>Jain, Deepak Kumar</au><au>García, Salvador</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RSAFormer: A method of polyp segmentation with region self-attention transformer</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2024-04</date><risdate>2024</risdate><volume>172</volume><spage>108268</spage><pages>108268-</pages><artnum>108268</artnum><issn>0010-4825</issn><issn>1879-0534</issn><eissn>1879-0534</eissn><abstract>Colonoscopy has attached great importance to early screening and clinical diagnosis of colon cancer. It remains a challenging task to achieve fine segmentation of polyps. However, existing State-of-the-art models still have limited segmentation ability due to the lack of clear and highly similar boundaries between normal tissue and polyps. To deal with this problem, we propose a region self-attention enhancement network (RSAFormer) with a transformer encoder to capture more robust features. Different from other excellent methods, RSAFormer uniquely employs a dual decoder structure to generate various feature maps. Contrasting with traditional methods that typically employ a single decoder, it offers more flexibility and detail in feature extraction. RSAFormer also introduces a region self-attention enhancement module (RSA) to acquire more accurate feature information and foster a stronger interplay between low-level and high-level features. This module enhances uncertain areas to extract more precise boundary information, these areas being signified by regional context. Extensive experiments were conducted on five prevalent polyp datasets to demonstrate RSAFormer’s proficiency. It achieves 92.2% and 83.5% mean Dice on Kvasir and ETIS, respectively, which outperformed most of the state-of-the-art models. •A region self-attention enhancement network (RSAFormer) is proposed.•RSAFormer uniquely uses a dual decoder structure to generate various feature maps.•A novel region self-attention enhancement (RSA) module is proposed.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>38493598</pmid><doi>10.1016/j.compbiomed.2024.108268</doi><orcidid>https://orcid.org/0009-0002-9822-1997</orcidid><orcidid>https://orcid.org/0009-0009-7019-9303</orcidid><orcidid>https://orcid.org/0000-0002-0453-5630</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0010-4825
ispartof Computers in biology and medicine, 2024-04, Vol.172, p.108268, Article 108268
issn 0010-4825
1879-0534
1879-0534
language eng
recordid cdi_proquest_miscellaneous_2967059390
source MEDLINE; Elsevier ScienceDirect Journals
subjects Colon cancer
Colonoscopy
Colorectal cancer
Feature extraction
Feature maps
Image Processing, Computer-Assisted
Information processing
Modules
Polyp segmentation
Polyps
Region self-attention
Segmentation
Transformer
Transformers
Uncertainty
title RSAFormer: A method of polyp segmentation with region self-attention transformer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A14%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RSAFormer:%20A%20method%20of%20polyp%20segmentation%20with%20region%20self-attention%20transformer&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Yin,%20Xuehui&rft.date=2024-04&rft.volume=172&rft.spage=108268&rft.pages=108268-&rft.artnum=108268&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2024.108268&rft_dat=%3Cproquest_cross%3E2967059390%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2973418976&rft_id=info:pmid/38493598&rft_els_id=S0010482524003524&rfr_iscdi=true