Feasibility of CVD diamond radiation energy conversion devices

We analyzed the feasibility of CVD diamond to operate as the main component in active devices for conversion of high-energy radiation into electrical power. A self-sustained radiation dosimeter based on the electron emission effect was designed and tested under low-energy X-ray beam (Mg X-ray tube)....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diamond and related materials 2006-11, Vol.15 (11), p.1980-1985
Hauptverfasser: Trucchi, D.M., Cappelli, E., Lisi, N., Ascarelli, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We analyzed the feasibility of CVD diamond to operate as the main component in active devices for conversion of high-energy radiation into electrical power. A self-sustained radiation dosimeter based on the electron emission effect was designed and tested under low-energy X-ray beam (Mg X-ray tube). The device operative conditions (absence of applied bias voltage) represented also the first experimental test towards the development of diamond energy conversion systems. On this basis, we designed a CVD diamond vacuum radiation energy converter and analyzed it using electron beams. An analysis of the performance was obtained letting both electron flux I 0 and kinetic energy E 0 to vary. For E 0 = 1 keV the power exploited by a load was estimated as tenths of nW and the total conversion efficiency was between 0.2 and 0.4%. This performance makes the device nominally competitive if compared to other similar solid-state converters. A discussion about the device design and possible improvements was performed in order to rationalize the conditions able to maximize the energy conversion efficiency.
ISSN:0925-9635
1879-0062
DOI:10.1016/j.diamond.2006.08.012