Set valued functions in Fréchet spaces: Continuity, Hukuhara differentiability and applications to set differential equations

The set K c ( F ) of compact convex subsets of a Fréchet space F is studied in detail and is realized as a projective limit of metric spaces. The notion of Hausdorff metric on it is replaced by a family of corresponding “semi-metrics” which provide the necessary background for the support of continu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2005-05, Vol.61 (4), p.559-575
Hauptverfasser: Galanis, G.N., Bhaskar, T. Gnana, Lakshmikantham, V., Palamides, P.K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 575
container_issue 4
container_start_page 559
container_title Nonlinear analysis
container_volume 61
creator Galanis, G.N.
Bhaskar, T. Gnana
Lakshmikantham, V.
Palamides, P.K.
description The set K c ( F ) of compact convex subsets of a Fréchet space F is studied in detail and is realized as a projective limit of metric spaces. The notion of Hausdorff metric on it is replaced by a family of corresponding “semi-metrics” which provide the necessary background for the support of continuity and Lipschitz continuity. Finally the notion of Hukuhara derivative suited to our study is developed. The proposed approach forms the appropriate environment within which the study of set differential equations for Fréchet spaces can be developed. A first example on R ∞ is included.
doi_str_mv 10.1016/j.na.2005.01.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29655157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X05000155</els_id><sourcerecordid>29655157</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-4c418980d5932caa1e491bd7924aa9762560fd80ecb8892ae072f10e71bdaf833</originalsourceid><addsrcrecordid>eNp1kM1q3TAQRkVpILdJ91lq065qdyRbsp1dueQPAlkkge7EXHlEdOvIjmQHsun79Dn6YlVwoN10NYtz5hvmY-xEQClA6K_7MmApAVQJogSo37GNaJuqUFKo92wDlZaFqvX3Q_YhpT0AiKbSG_bzlmb-jMNCPXdLsLMfQ-I-8PP4-5d9yDBNaCmd8u0YZh8WP7984ZfLj-UBI_LeO0eRMsGdHzLjGHqO0zR4i2vWPPKUY_4xB05Py0qP2YHDIdHHt3nE7s_P7raXxfXNxdX223VhK6Xmora1aLsWetVV0iIKqjux65tO1ohdo6XS4PoWyO7atpNI0EgngJosoWur6oh9XnOnOD4tlGbz6JOlYcBA45KM7LRSQjVZhFW0cUwpkjNT9I8YX4wA81q02ZuA5rVoA8LkovPKp7dsTBYHFzFYn_7uaS10LWX2TleP8qPPnqJJ1lOw1PtIdjb96P9_5A_K45Vo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29655157</pqid></control><display><type>article</type><title>Set valued functions in Fréchet spaces: Continuity, Hukuhara differentiability and applications to set differential equations</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Galanis, G.N. ; Bhaskar, T. Gnana ; Lakshmikantham, V. ; Palamides, P.K.</creator><creatorcontrib>Galanis, G.N. ; Bhaskar, T. Gnana ; Lakshmikantham, V. ; Palamides, P.K.</creatorcontrib><description>The set K c ( F ) of compact convex subsets of a Fréchet space F is studied in detail and is realized as a projective limit of metric spaces. The notion of Hausdorff metric on it is replaced by a family of corresponding “semi-metrics” which provide the necessary background for the support of continuity and Lipschitz continuity. Finally the notion of Hukuhara derivative suited to our study is developed. The proposed approach forms the appropriate environment within which the study of set differential equations for Fréchet spaces can be developed. A first example on R ∞ is included.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2005.01.004</identifier><identifier>CODEN: NOANDD</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Exact sciences and technology ; Fréchet spaces ; Global analysis, analysis on manifolds ; Hukuhara differentiability ; Mathematics ; Sciences and techniques of general use ; Set differential equations ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><ispartof>Nonlinear analysis, 2005-05, Vol.61 (4), p.559-575</ispartof><rights>2005 Elsevier Ltd</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-4c418980d5932caa1e491bd7924aa9762560fd80ecb8892ae072f10e71bdaf833</citedby><cites>FETCH-LOGICAL-c355t-4c418980d5932caa1e491bd7924aa9762560fd80ecb8892ae072f10e71bdaf833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0362546X05000155$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16616422$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Galanis, G.N.</creatorcontrib><creatorcontrib>Bhaskar, T. Gnana</creatorcontrib><creatorcontrib>Lakshmikantham, V.</creatorcontrib><creatorcontrib>Palamides, P.K.</creatorcontrib><title>Set valued functions in Fréchet spaces: Continuity, Hukuhara differentiability and applications to set differential equations</title><title>Nonlinear analysis</title><description>The set K c ( F ) of compact convex subsets of a Fréchet space F is studied in detail and is realized as a projective limit of metric spaces. The notion of Hausdorff metric on it is replaced by a family of corresponding “semi-metrics” which provide the necessary background for the support of continuity and Lipschitz continuity. Finally the notion of Hukuhara derivative suited to our study is developed. The proposed approach forms the appropriate environment within which the study of set differential equations for Fréchet spaces can be developed. A first example on R ∞ is included.</description><subject>Exact sciences and technology</subject><subject>Fréchet spaces</subject><subject>Global analysis, analysis on manifolds</subject><subject>Hukuhara differentiability</subject><subject>Mathematics</subject><subject>Sciences and techniques of general use</subject><subject>Set differential equations</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp1kM1q3TAQRkVpILdJ91lq065qdyRbsp1dueQPAlkkge7EXHlEdOvIjmQHsun79Dn6YlVwoN10NYtz5hvmY-xEQClA6K_7MmApAVQJogSo37GNaJuqUFKo92wDlZaFqvX3Q_YhpT0AiKbSG_bzlmb-jMNCPXdLsLMfQ-I-8PP4-5d9yDBNaCmd8u0YZh8WP7984ZfLj-UBI_LeO0eRMsGdHzLjGHqO0zR4i2vWPPKUY_4xB05Py0qP2YHDIdHHt3nE7s_P7raXxfXNxdX223VhK6Xmora1aLsWetVV0iIKqjux65tO1ohdo6XS4PoWyO7atpNI0EgngJosoWur6oh9XnOnOD4tlGbz6JOlYcBA45KM7LRSQjVZhFW0cUwpkjNT9I8YX4wA81q02ZuA5rVoA8LkovPKp7dsTBYHFzFYn_7uaS10LWX2TleP8qPPnqJJ1lOw1PtIdjb96P9_5A_K45Vo</recordid><startdate>20050515</startdate><enddate>20050515</enddate><creator>Galanis, G.N.</creator><creator>Bhaskar, T. Gnana</creator><creator>Lakshmikantham, V.</creator><creator>Palamides, P.K.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20050515</creationdate><title>Set valued functions in Fréchet spaces: Continuity, Hukuhara differentiability and applications to set differential equations</title><author>Galanis, G.N. ; Bhaskar, T. Gnana ; Lakshmikantham, V. ; Palamides, P.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-4c418980d5932caa1e491bd7924aa9762560fd80ecb8892ae072f10e71bdaf833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Exact sciences and technology</topic><topic>Fréchet spaces</topic><topic>Global analysis, analysis on manifolds</topic><topic>Hukuhara differentiability</topic><topic>Mathematics</topic><topic>Sciences and techniques of general use</topic><topic>Set differential equations</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galanis, G.N.</creatorcontrib><creatorcontrib>Bhaskar, T. Gnana</creatorcontrib><creatorcontrib>Lakshmikantham, V.</creatorcontrib><creatorcontrib>Palamides, P.K.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galanis, G.N.</au><au>Bhaskar, T. Gnana</au><au>Lakshmikantham, V.</au><au>Palamides, P.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Set valued functions in Fréchet spaces: Continuity, Hukuhara differentiability and applications to set differential equations</atitle><jtitle>Nonlinear analysis</jtitle><date>2005-05-15</date><risdate>2005</risdate><volume>61</volume><issue>4</issue><spage>559</spage><epage>575</epage><pages>559-575</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><coden>NOANDD</coden><abstract>The set K c ( F ) of compact convex subsets of a Fréchet space F is studied in detail and is realized as a projective limit of metric spaces. The notion of Hausdorff metric on it is replaced by a family of corresponding “semi-metrics” which provide the necessary background for the support of continuity and Lipschitz continuity. Finally the notion of Hukuhara derivative suited to our study is developed. The proposed approach forms the appropriate environment within which the study of set differential equations for Fréchet spaces can be developed. A first example on R ∞ is included.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2005.01.004</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0362-546X
ispartof Nonlinear analysis, 2005-05, Vol.61 (4), p.559-575
issn 0362-546X
1873-5215
language eng
recordid cdi_proquest_miscellaneous_29655157
source Elsevier ScienceDirect Journals Complete
subjects Exact sciences and technology
Fréchet spaces
Global analysis, analysis on manifolds
Hukuhara differentiability
Mathematics
Sciences and techniques of general use
Set differential equations
Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds
title Set valued functions in Fréchet spaces: Continuity, Hukuhara differentiability and applications to set differential equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T17%3A29%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Set%20valued%20functions%20in%20Fr%C3%A9chet%20spaces:%20Continuity,%20Hukuhara%20differentiability%20and%20applications%20to%20set%20differential%20equations&rft.jtitle=Nonlinear%20analysis&rft.au=Galanis,%20G.N.&rft.date=2005-05-15&rft.volume=61&rft.issue=4&rft.spage=559&rft.epage=575&rft.pages=559-575&rft.issn=0362-546X&rft.eissn=1873-5215&rft.coden=NOANDD&rft_id=info:doi/10.1016/j.na.2005.01.004&rft_dat=%3Cproquest_cross%3E29655157%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29655157&rft_id=info:pmid/&rft_els_id=S0362546X05000155&rfr_iscdi=true