Assessment and improvement of precise time step integration method
In this paper, the numerical stability and accuracy of Precise Time Step Integration Method are discussed in detail. It is shown that the method is conditionally stable and it has inherent algorithmic damping, algorithmic period error and algorithmic amplitude decay. However for discretized structur...
Gespeichert in:
Veröffentlicht in: | Computers & structures 2006-05, Vol.84 (12), p.779-786 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 786 |
---|---|
container_issue | 12 |
container_start_page | 779 |
container_title | Computers & structures |
container_volume | 84 |
creator | Wang, Mengfu Au, F.T.K. |
description | In this paper, the numerical stability and accuracy of Precise Time Step Integration Method are discussed in detail. It is shown that the method is conditionally stable and it has inherent algorithmic damping, algorithmic period error and algorithmic amplitude decay. However for discretized structural models, it is relatively easy for this time integration scheme to satisfy the stability conditions and required accuracy. Based on the above results, the optimum values of the truncation order
L and bisection order
N are presented. The Gauss quadrature method is used to improve the accuracy of the Precise Time Step Integration Method. Finally, two numerical examples are presented to show the feasibility of this improvement method. |
doi_str_mv | 10.1016/j.compstruc.2006.02.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29654978</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045794906000265</els_id><sourcerecordid>29654978</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-797a0558c841aec4753fe9bc53de1d21e69c619246191ab5704c543fbc85f7f93</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEuXxDWQDuwTbseN4WSpeUiU2sLZcZwKu8sLjVuLvcWkFSzYeWTozd-YQcsVowSirbteFG_sJY9i4glNaFZQXlLIjMmO10jnnojwmM0qFzJUW-pScIa5pAgWlM3I3RwTEHoaY2aHJfD-FcQs__7HNpgDOI2TR95BhhCnzQ4T3YKMfh6yH-DE2F-SktR3C5aGek7eH-9fFU758eXxezJe5K1UVU7iyVMra1YJZcELJsgW9crJsgDWcQaVdxTQX6WF2JRUVToqyXblatqrV5Tm52c9NG35uAKPpPTroOjvAuEHDdSWFVnUC1R50YUQM0Jop-N6GL8Oo2Tkza_PrzOycGcpNcpY6rw8RFp3t2mCHdP5fu6qUTOISN99zkO7deggGnYfBQeOTsGia0f-b9Q3ML4c0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29654978</pqid></control><display><type>article</type><title>Assessment and improvement of precise time step integration method</title><source>Access via ScienceDirect (Elsevier)</source><creator>Wang, Mengfu ; Au, F.T.K.</creator><creatorcontrib>Wang, Mengfu ; Au, F.T.K.</creatorcontrib><description>In this paper, the numerical stability and accuracy of Precise Time Step Integration Method are discussed in detail. It is shown that the method is conditionally stable and it has inherent algorithmic damping, algorithmic period error and algorithmic amplitude decay. However for discretized structural models, it is relatively easy for this time integration scheme to satisfy the stability conditions and required accuracy. Based on the above results, the optimum values of the truncation order
L and bisection order
N are presented. The Gauss quadrature method is used to improve the accuracy of the Precise Time Step Integration Method. Finally, two numerical examples are presented to show the feasibility of this improvement method.</description><identifier>ISSN: 0045-7949</identifier><identifier>EISSN: 1879-2243</identifier><identifier>DOI: 10.1016/j.compstruc.2006.02.001</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Computation accuracy ; Computational techniques ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Mathematical methods in physics ; Numerical integration ; Numerical stability ; Physics ; Precise time step integration method</subject><ispartof>Computers & structures, 2006-05, Vol.84 (12), p.779-786</ispartof><rights>2006 Elsevier Ltd</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-797a0558c841aec4753fe9bc53de1d21e69c619246191ab5704c543fbc85f7f93</citedby><cites>FETCH-LOGICAL-c376t-797a0558c841aec4753fe9bc53de1d21e69c619246191ab5704c543fbc85f7f93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compstruc.2006.02.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17675064$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Mengfu</creatorcontrib><creatorcontrib>Au, F.T.K.</creatorcontrib><title>Assessment and improvement of precise time step integration method</title><title>Computers & structures</title><description>In this paper, the numerical stability and accuracy of Precise Time Step Integration Method are discussed in detail. It is shown that the method is conditionally stable and it has inherent algorithmic damping, algorithmic period error and algorithmic amplitude decay. However for discretized structural models, it is relatively easy for this time integration scheme to satisfy the stability conditions and required accuracy. Based on the above results, the optimum values of the truncation order
L and bisection order
N are presented. The Gauss quadrature method is used to improve the accuracy of the Precise Time Step Integration Method. Finally, two numerical examples are presented to show the feasibility of this improvement method.</description><subject>Computation accuracy</subject><subject>Computational techniques</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical methods in physics</subject><subject>Numerical integration</subject><subject>Numerical stability</subject><subject>Physics</subject><subject>Precise time step integration method</subject><issn>0045-7949</issn><issn>1879-2243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEuXxDWQDuwTbseN4WSpeUiU2sLZcZwKu8sLjVuLvcWkFSzYeWTozd-YQcsVowSirbteFG_sJY9i4glNaFZQXlLIjMmO10jnnojwmM0qFzJUW-pScIa5pAgWlM3I3RwTEHoaY2aHJfD-FcQs__7HNpgDOI2TR95BhhCnzQ4T3YKMfh6yH-DE2F-SktR3C5aGek7eH-9fFU758eXxezJe5K1UVU7iyVMra1YJZcELJsgW9crJsgDWcQaVdxTQX6WF2JRUVToqyXblatqrV5Tm52c9NG35uAKPpPTroOjvAuEHDdSWFVnUC1R50YUQM0Jop-N6GL8Oo2Tkza_PrzOycGcpNcpY6rw8RFp3t2mCHdP5fu6qUTOISN99zkO7deggGnYfBQeOTsGia0f-b9Q3ML4c0</recordid><startdate>20060501</startdate><enddate>20060501</enddate><creator>Wang, Mengfu</creator><creator>Au, F.T.K.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20060501</creationdate><title>Assessment and improvement of precise time step integration method</title><author>Wang, Mengfu ; Au, F.T.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-797a0558c841aec4753fe9bc53de1d21e69c619246191ab5704c543fbc85f7f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Computation accuracy</topic><topic>Computational techniques</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical methods in physics</topic><topic>Numerical integration</topic><topic>Numerical stability</topic><topic>Physics</topic><topic>Precise time step integration method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Mengfu</creatorcontrib><creatorcontrib>Au, F.T.K.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Mengfu</au><au>Au, F.T.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment and improvement of precise time step integration method</atitle><jtitle>Computers & structures</jtitle><date>2006-05-01</date><risdate>2006</risdate><volume>84</volume><issue>12</issue><spage>779</spage><epage>786</epage><pages>779-786</pages><issn>0045-7949</issn><eissn>1879-2243</eissn><abstract>In this paper, the numerical stability and accuracy of Precise Time Step Integration Method are discussed in detail. It is shown that the method is conditionally stable and it has inherent algorithmic damping, algorithmic period error and algorithmic amplitude decay. However for discretized structural models, it is relatively easy for this time integration scheme to satisfy the stability conditions and required accuracy. Based on the above results, the optimum values of the truncation order
L and bisection order
N are presented. The Gauss quadrature method is used to improve the accuracy of the Precise Time Step Integration Method. Finally, two numerical examples are presented to show the feasibility of this improvement method.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compstruc.2006.02.001</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7949 |
ispartof | Computers & structures, 2006-05, Vol.84 (12), p.779-786 |
issn | 0045-7949 1879-2243 |
language | eng |
recordid | cdi_proquest_miscellaneous_29654978 |
source | Access via ScienceDirect (Elsevier) |
subjects | Computation accuracy Computational techniques Exact sciences and technology Fundamental areas of phenomenology (including applications) Mathematical methods in physics Numerical integration Numerical stability Physics Precise time step integration method |
title | Assessment and improvement of precise time step integration method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T21%3A49%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20and%20improvement%20of%20precise%20time%20step%20integration%20method&rft.jtitle=Computers%20&%20structures&rft.au=Wang,%20Mengfu&rft.date=2006-05-01&rft.volume=84&rft.issue=12&rft.spage=779&rft.epage=786&rft.pages=779-786&rft.issn=0045-7949&rft.eissn=1879-2243&rft_id=info:doi/10.1016/j.compstruc.2006.02.001&rft_dat=%3Cproquest_cross%3E29654978%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29654978&rft_id=info:pmid/&rft_els_id=S0045794906000265&rfr_iscdi=true |