Assessment and improvement of precise time step integration method

In this paper, the numerical stability and accuracy of Precise Time Step Integration Method are discussed in detail. It is shown that the method is conditionally stable and it has inherent algorithmic damping, algorithmic period error and algorithmic amplitude decay. However for discretized structur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & structures 2006-05, Vol.84 (12), p.779-786
Hauptverfasser: Wang, Mengfu, Au, F.T.K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 786
container_issue 12
container_start_page 779
container_title Computers & structures
container_volume 84
creator Wang, Mengfu
Au, F.T.K.
description In this paper, the numerical stability and accuracy of Precise Time Step Integration Method are discussed in detail. It is shown that the method is conditionally stable and it has inherent algorithmic damping, algorithmic period error and algorithmic amplitude decay. However for discretized structural models, it is relatively easy for this time integration scheme to satisfy the stability conditions and required accuracy. Based on the above results, the optimum values of the truncation order L and bisection order N are presented. The Gauss quadrature method is used to improve the accuracy of the Precise Time Step Integration Method. Finally, two numerical examples are presented to show the feasibility of this improvement method.
doi_str_mv 10.1016/j.compstruc.2006.02.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29654978</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045794906000265</els_id><sourcerecordid>29654978</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-797a0558c841aec4753fe9bc53de1d21e69c619246191ab5704c543fbc85f7f93</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEuXxDWQDuwTbseN4WSpeUiU2sLZcZwKu8sLjVuLvcWkFSzYeWTozd-YQcsVowSirbteFG_sJY9i4glNaFZQXlLIjMmO10jnnojwmM0qFzJUW-pScIa5pAgWlM3I3RwTEHoaY2aHJfD-FcQs__7HNpgDOI2TR95BhhCnzQ4T3YKMfh6yH-DE2F-SktR3C5aGek7eH-9fFU758eXxezJe5K1UVU7iyVMra1YJZcELJsgW9crJsgDWcQaVdxTQX6WF2JRUVToqyXblatqrV5Tm52c9NG35uAKPpPTroOjvAuEHDdSWFVnUC1R50YUQM0Jop-N6GL8Oo2Tkza_PrzOycGcpNcpY6rw8RFp3t2mCHdP5fu6qUTOISN99zkO7deggGnYfBQeOTsGia0f-b9Q3ML4c0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29654978</pqid></control><display><type>article</type><title>Assessment and improvement of precise time step integration method</title><source>Access via ScienceDirect (Elsevier)</source><creator>Wang, Mengfu ; Au, F.T.K.</creator><creatorcontrib>Wang, Mengfu ; Au, F.T.K.</creatorcontrib><description>In this paper, the numerical stability and accuracy of Precise Time Step Integration Method are discussed in detail. It is shown that the method is conditionally stable and it has inherent algorithmic damping, algorithmic period error and algorithmic amplitude decay. However for discretized structural models, it is relatively easy for this time integration scheme to satisfy the stability conditions and required accuracy. Based on the above results, the optimum values of the truncation order L and bisection order N are presented. The Gauss quadrature method is used to improve the accuracy of the Precise Time Step Integration Method. Finally, two numerical examples are presented to show the feasibility of this improvement method.</description><identifier>ISSN: 0045-7949</identifier><identifier>EISSN: 1879-2243</identifier><identifier>DOI: 10.1016/j.compstruc.2006.02.001</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Computation accuracy ; Computational techniques ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Mathematical methods in physics ; Numerical integration ; Numerical stability ; Physics ; Precise time step integration method</subject><ispartof>Computers &amp; structures, 2006-05, Vol.84 (12), p.779-786</ispartof><rights>2006 Elsevier Ltd</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-797a0558c841aec4753fe9bc53de1d21e69c619246191ab5704c543fbc85f7f93</citedby><cites>FETCH-LOGICAL-c376t-797a0558c841aec4753fe9bc53de1d21e69c619246191ab5704c543fbc85f7f93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compstruc.2006.02.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17675064$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Mengfu</creatorcontrib><creatorcontrib>Au, F.T.K.</creatorcontrib><title>Assessment and improvement of precise time step integration method</title><title>Computers &amp; structures</title><description>In this paper, the numerical stability and accuracy of Precise Time Step Integration Method are discussed in detail. It is shown that the method is conditionally stable and it has inherent algorithmic damping, algorithmic period error and algorithmic amplitude decay. However for discretized structural models, it is relatively easy for this time integration scheme to satisfy the stability conditions and required accuracy. Based on the above results, the optimum values of the truncation order L and bisection order N are presented. The Gauss quadrature method is used to improve the accuracy of the Precise Time Step Integration Method. Finally, two numerical examples are presented to show the feasibility of this improvement method.</description><subject>Computation accuracy</subject><subject>Computational techniques</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical methods in physics</subject><subject>Numerical integration</subject><subject>Numerical stability</subject><subject>Physics</subject><subject>Precise time step integration method</subject><issn>0045-7949</issn><issn>1879-2243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEuXxDWQDuwTbseN4WSpeUiU2sLZcZwKu8sLjVuLvcWkFSzYeWTozd-YQcsVowSirbteFG_sJY9i4glNaFZQXlLIjMmO10jnnojwmM0qFzJUW-pScIa5pAgWlM3I3RwTEHoaY2aHJfD-FcQs__7HNpgDOI2TR95BhhCnzQ4T3YKMfh6yH-DE2F-SktR3C5aGek7eH-9fFU758eXxezJe5K1UVU7iyVMra1YJZcELJsgW9crJsgDWcQaVdxTQX6WF2JRUVToqyXblatqrV5Tm52c9NG35uAKPpPTroOjvAuEHDdSWFVnUC1R50YUQM0Jop-N6GL8Oo2Tkza_PrzOycGcpNcpY6rw8RFp3t2mCHdP5fu6qUTOISN99zkO7deggGnYfBQeOTsGia0f-b9Q3ML4c0</recordid><startdate>20060501</startdate><enddate>20060501</enddate><creator>Wang, Mengfu</creator><creator>Au, F.T.K.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20060501</creationdate><title>Assessment and improvement of precise time step integration method</title><author>Wang, Mengfu ; Au, F.T.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-797a0558c841aec4753fe9bc53de1d21e69c619246191ab5704c543fbc85f7f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Computation accuracy</topic><topic>Computational techniques</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical methods in physics</topic><topic>Numerical integration</topic><topic>Numerical stability</topic><topic>Physics</topic><topic>Precise time step integration method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Mengfu</creatorcontrib><creatorcontrib>Au, F.T.K.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Mengfu</au><au>Au, F.T.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment and improvement of precise time step integration method</atitle><jtitle>Computers &amp; structures</jtitle><date>2006-05-01</date><risdate>2006</risdate><volume>84</volume><issue>12</issue><spage>779</spage><epage>786</epage><pages>779-786</pages><issn>0045-7949</issn><eissn>1879-2243</eissn><abstract>In this paper, the numerical stability and accuracy of Precise Time Step Integration Method are discussed in detail. It is shown that the method is conditionally stable and it has inherent algorithmic damping, algorithmic period error and algorithmic amplitude decay. However for discretized structural models, it is relatively easy for this time integration scheme to satisfy the stability conditions and required accuracy. Based on the above results, the optimum values of the truncation order L and bisection order N are presented. The Gauss quadrature method is used to improve the accuracy of the Precise Time Step Integration Method. Finally, two numerical examples are presented to show the feasibility of this improvement method.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compstruc.2006.02.001</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0045-7949
ispartof Computers & structures, 2006-05, Vol.84 (12), p.779-786
issn 0045-7949
1879-2243
language eng
recordid cdi_proquest_miscellaneous_29654978
source Access via ScienceDirect (Elsevier)
subjects Computation accuracy
Computational techniques
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Mathematical methods in physics
Numerical integration
Numerical stability
Physics
Precise time step integration method
title Assessment and improvement of precise time step integration method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T21%3A49%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20and%20improvement%20of%20precise%20time%20step%20integration%20method&rft.jtitle=Computers%20&%20structures&rft.au=Wang,%20Mengfu&rft.date=2006-05-01&rft.volume=84&rft.issue=12&rft.spage=779&rft.epage=786&rft.pages=779-786&rft.issn=0045-7949&rft.eissn=1879-2243&rft_id=info:doi/10.1016/j.compstruc.2006.02.001&rft_dat=%3Cproquest_cross%3E29654978%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29654978&rft_id=info:pmid/&rft_els_id=S0045794906000265&rfr_iscdi=true