Surface growth mechanisms and structural faulting in the growth of large single and spherulitic titanosilicate ETS-4 crystals

Morphological, surface and crystallographic analyses of titanosilicate ETS-4 products, with diverse habits ranging from spherulitic particles composed of submicron crystallites to large single crystals, are presented. Pole figures revealed that crystal surfaces with a-, b- and c- axes corresponded t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of crystal growth 2004-10, Vol.270 (3-4), p.674-684
Hauptverfasser: Miraglia, Peter Q., Yilmaz, Bilge, Warzywoda, Juliusz, Sacco, Albert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 684
container_issue 3-4
container_start_page 674
container_title Journal of crystal growth
container_volume 270
creator Miraglia, Peter Q.
Yilmaz, Bilge
Warzywoda, Juliusz
Sacco, Albert
description Morphological, surface and crystallographic analyses of titanosilicate ETS-4 products, with diverse habits ranging from spherulitic particles composed of submicron crystallites to large single crystals, are presented. Pole figures revealed that crystal surfaces with a-, b- and c- axes corresponded to 〈110〉, 〈010〉 and 〈001〉 directions, respectively. Thus, technologically important 8-membered ring pores and titania chains in ETS-4 run along the b-axis of single crystals and terminate at the smallest crystal face. Height of the spiral growth steps observed on {100} and {001} surfaces corresponded to the interplanar spacings associated with their crystallographic orientation, and is equivalent to the thickness of building units that form the ETS-4 framework. Data suggest that the more viscous synthesis mixtures, with a large driving force for growth, increased the two- and three-dimensional nucleation, while limiting the transport of nutrients to the growth surface. These conditions increase the tendency for stacking fault formation on {100} surfaces and small angle branching, which eventually results in spherulitic growth. The growth of high quality ETS-4 single crystals (from less viscous synthesis mixtures) occurred at lower surface nucleation rates. Data suggest that these high quality, large crystals grew due to one-dimensional nucleation at spiral hillocks, and indicate that under these conditions un-faulted growth is preferred.
doi_str_mv 10.1016/j.jcrysgro.2004.06.032
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29644606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022024804007705</els_id><sourcerecordid>29644606</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-5ad9636a407a86df5a41cd8d0b382d952fcb5a7aa33a08a65842785c05899a743</originalsourceid><addsrcrecordid>eNqFkD1vFDEQhi0UJC6Bv4DckG4348_1dqAoQKRIFAm1NfF673zy7R62F5Qi_x2fLh9lmpli3mfemZeQzwxaBkxfbNutSw95neaWA8gWdAuCvyMrZjrRKAB-Qla18ga4NB_Iac5bgEoyWJHH2yWN6Dyt-L-yoTvvNjiFvMsUp4HmkhZXloSRjrjEEqY1DRMtmxdgHmnEtPY011n0R2q_8WmJoQRHSyg4zTnE4LB4enV320h6uLdgzB_J-7E2_-mpn5Hf36_uLn82N79-XF9-u2mc6FhpFA69FholdGj0MCqUzA1mgHth-NArPrp7hR2iEAgGtTKSd0Y5UKbvsZPijJwf9-7T_GfxudhdyM7HiJOfl2x5r6XUoKtQH4UuzTknP9p9CjtMD5aBPaRtt_Y5bXtI24K2Ne0KfnlywOwwjgknF_IrrRmTShwMvh51vr77N_hkswt-cn4Iybtihzm8ZfUf_S-bkw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29644606</pqid></control><display><type>article</type><title>Surface growth mechanisms and structural faulting in the growth of large single and spherulitic titanosilicate ETS-4 crystals</title><source>Access via ScienceDirect (Elsevier)</source><creator>Miraglia, Peter Q. ; Yilmaz, Bilge ; Warzywoda, Juliusz ; Sacco, Albert</creator><creatorcontrib>Miraglia, Peter Q. ; Yilmaz, Bilge ; Warzywoda, Juliusz ; Sacco, Albert</creatorcontrib><description>Morphological, surface and crystallographic analyses of titanosilicate ETS-4 products, with diverse habits ranging from spherulitic particles composed of submicron crystallites to large single crystals, are presented. Pole figures revealed that crystal surfaces with a-, b- and c- axes corresponded to 〈110〉, 〈010〉 and 〈001〉 directions, respectively. Thus, technologically important 8-membered ring pores and titania chains in ETS-4 run along the b-axis of single crystals and terminate at the smallest crystal face. Height of the spiral growth steps observed on {100} and {001} surfaces corresponded to the interplanar spacings associated with their crystallographic orientation, and is equivalent to the thickness of building units that form the ETS-4 framework. Data suggest that the more viscous synthesis mixtures, with a large driving force for growth, increased the two- and three-dimensional nucleation, while limiting the transport of nutrients to the growth surface. These conditions increase the tendency for stacking fault formation on {100} surfaces and small angle branching, which eventually results in spherulitic growth. The growth of high quality ETS-4 single crystals (from less viscous synthesis mixtures) occurred at lower surface nucleation rates. Data suggest that these high quality, large crystals grew due to one-dimensional nucleation at spiral hillocks, and indicate that under these conditions un-faulted growth is preferred.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2004.06.032</identifier><identifier>CODEN: JCRGAE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A1. GADDS, A1. Growth models, A1. Surface structure ; A2. Single crystal growth ; B1. ETS-4 ; B1. Titanosilicates ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Growth from solutions ; Materials science ; Methods of crystal growth; physics of crystal growth ; Physics ; Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</subject><ispartof>Journal of crystal growth, 2004-10, Vol.270 (3-4), p.674-684</ispartof><rights>2004 Elsevier B.V.</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-5ad9636a407a86df5a41cd8d0b382d952fcb5a7aa33a08a65842785c05899a743</citedby><cites>FETCH-LOGICAL-c371t-5ad9636a407a86df5a41cd8d0b382d952fcb5a7aa33a08a65842785c05899a743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcrysgro.2004.06.032$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27926,27927,45997</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16114536$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Miraglia, Peter Q.</creatorcontrib><creatorcontrib>Yilmaz, Bilge</creatorcontrib><creatorcontrib>Warzywoda, Juliusz</creatorcontrib><creatorcontrib>Sacco, Albert</creatorcontrib><title>Surface growth mechanisms and structural faulting in the growth of large single and spherulitic titanosilicate ETS-4 crystals</title><title>Journal of crystal growth</title><description>Morphological, surface and crystallographic analyses of titanosilicate ETS-4 products, with diverse habits ranging from spherulitic particles composed of submicron crystallites to large single crystals, are presented. Pole figures revealed that crystal surfaces with a-, b- and c- axes corresponded to 〈110〉, 〈010〉 and 〈001〉 directions, respectively. Thus, technologically important 8-membered ring pores and titania chains in ETS-4 run along the b-axis of single crystals and terminate at the smallest crystal face. Height of the spiral growth steps observed on {100} and {001} surfaces corresponded to the interplanar spacings associated with their crystallographic orientation, and is equivalent to the thickness of building units that form the ETS-4 framework. Data suggest that the more viscous synthesis mixtures, with a large driving force for growth, increased the two- and three-dimensional nucleation, while limiting the transport of nutrients to the growth surface. These conditions increase the tendency for stacking fault formation on {100} surfaces and small angle branching, which eventually results in spherulitic growth. The growth of high quality ETS-4 single crystals (from less viscous synthesis mixtures) occurred at lower surface nucleation rates. Data suggest that these high quality, large crystals grew due to one-dimensional nucleation at spiral hillocks, and indicate that under these conditions un-faulted growth is preferred.</description><subject>A1. GADDS, A1. Growth models, A1. Surface structure</subject><subject>A2. Single crystal growth</subject><subject>B1. ETS-4</subject><subject>B1. Titanosilicates</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Growth from solutions</subject><subject>Materials science</subject><subject>Methods of crystal growth; physics of crystal growth</subject><subject>Physics</subject><subject>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkD1vFDEQhi0UJC6Bv4DckG4348_1dqAoQKRIFAm1NfF673zy7R62F5Qi_x2fLh9lmpli3mfemZeQzwxaBkxfbNutSw95neaWA8gWdAuCvyMrZjrRKAB-Qla18ga4NB_Iac5bgEoyWJHH2yWN6Dyt-L-yoTvvNjiFvMsUp4HmkhZXloSRjrjEEqY1DRMtmxdgHmnEtPY011n0R2q_8WmJoQRHSyg4zTnE4LB4enV320h6uLdgzB_J-7E2_-mpn5Hf36_uLn82N79-XF9-u2mc6FhpFA69FholdGj0MCqUzA1mgHth-NArPrp7hR2iEAgGtTKSd0Y5UKbvsZPijJwf9-7T_GfxudhdyM7HiJOfl2x5r6XUoKtQH4UuzTknP9p9CjtMD5aBPaRtt_Y5bXtI24K2Ne0KfnlywOwwjgknF_IrrRmTShwMvh51vr77N_hkswt-cn4Iybtihzm8ZfUf_S-bkw</recordid><startdate>20041001</startdate><enddate>20041001</enddate><creator>Miraglia, Peter Q.</creator><creator>Yilmaz, Bilge</creator><creator>Warzywoda, Juliusz</creator><creator>Sacco, Albert</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20041001</creationdate><title>Surface growth mechanisms and structural faulting in the growth of large single and spherulitic titanosilicate ETS-4 crystals</title><author>Miraglia, Peter Q. ; Yilmaz, Bilge ; Warzywoda, Juliusz ; Sacco, Albert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-5ad9636a407a86df5a41cd8d0b382d952fcb5a7aa33a08a65842785c05899a743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>A1. GADDS, A1. Growth models, A1. Surface structure</topic><topic>A2. Single crystal growth</topic><topic>B1. ETS-4</topic><topic>B1. Titanosilicates</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Growth from solutions</topic><topic>Materials science</topic><topic>Methods of crystal growth; physics of crystal growth</topic><topic>Physics</topic><topic>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miraglia, Peter Q.</creatorcontrib><creatorcontrib>Yilmaz, Bilge</creatorcontrib><creatorcontrib>Warzywoda, Juliusz</creatorcontrib><creatorcontrib>Sacco, Albert</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miraglia, Peter Q.</au><au>Yilmaz, Bilge</au><au>Warzywoda, Juliusz</au><au>Sacco, Albert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface growth mechanisms and structural faulting in the growth of large single and spherulitic titanosilicate ETS-4 crystals</atitle><jtitle>Journal of crystal growth</jtitle><date>2004-10-01</date><risdate>2004</risdate><volume>270</volume><issue>3-4</issue><spage>674</spage><epage>684</epage><pages>674-684</pages><issn>0022-0248</issn><eissn>1873-5002</eissn><coden>JCRGAE</coden><abstract>Morphological, surface and crystallographic analyses of titanosilicate ETS-4 products, with diverse habits ranging from spherulitic particles composed of submicron crystallites to large single crystals, are presented. Pole figures revealed that crystal surfaces with a-, b- and c- axes corresponded to 〈110〉, 〈010〉 and 〈001〉 directions, respectively. Thus, technologically important 8-membered ring pores and titania chains in ETS-4 run along the b-axis of single crystals and terminate at the smallest crystal face. Height of the spiral growth steps observed on {100} and {001} surfaces corresponded to the interplanar spacings associated with their crystallographic orientation, and is equivalent to the thickness of building units that form the ETS-4 framework. Data suggest that the more viscous synthesis mixtures, with a large driving force for growth, increased the two- and three-dimensional nucleation, while limiting the transport of nutrients to the growth surface. These conditions increase the tendency for stacking fault formation on {100} surfaces and small angle branching, which eventually results in spherulitic growth. The growth of high quality ETS-4 single crystals (from less viscous synthesis mixtures) occurred at lower surface nucleation rates. Data suggest that these high quality, large crystals grew due to one-dimensional nucleation at spiral hillocks, and indicate that under these conditions un-faulted growth is preferred.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2004.06.032</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-0248
ispartof Journal of crystal growth, 2004-10, Vol.270 (3-4), p.674-684
issn 0022-0248
1873-5002
language eng
recordid cdi_proquest_miscellaneous_29644606
source Access via ScienceDirect (Elsevier)
subjects A1. GADDS, A1. Growth models, A1. Surface structure
A2. Single crystal growth
B1. ETS-4
B1. Titanosilicates
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Growth from solutions
Materials science
Methods of crystal growth
physics of crystal growth
Physics
Theory and models of crystal growth
physics of crystal growth, crystal morphology and orientation
title Surface growth mechanisms and structural faulting in the growth of large single and spherulitic titanosilicate ETS-4 crystals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T02%3A11%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20growth%20mechanisms%20and%20structural%20faulting%20in%20the%20growth%20of%20large%20single%20and%20spherulitic%20titanosilicate%20ETS-4%20crystals&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Miraglia,%20Peter%20Q.&rft.date=2004-10-01&rft.volume=270&rft.issue=3-4&rft.spage=674&rft.epage=684&rft.pages=674-684&rft.issn=0022-0248&rft.eissn=1873-5002&rft.coden=JCRGAE&rft_id=info:doi/10.1016/j.jcrysgro.2004.06.032&rft_dat=%3Cproquest_cross%3E29644606%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29644606&rft_id=info:pmid/&rft_els_id=S0022024804007705&rfr_iscdi=true