Surface growth mechanisms and structural faulting in the growth of large single and spherulitic titanosilicate ETS-4 crystals
Morphological, surface and crystallographic analyses of titanosilicate ETS-4 products, with diverse habits ranging from spherulitic particles composed of submicron crystallites to large single crystals, are presented. Pole figures revealed that crystal surfaces with a-, b- and c- axes corresponded t...
Gespeichert in:
Veröffentlicht in: | Journal of crystal growth 2004-10, Vol.270 (3-4), p.674-684 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 684 |
---|---|
container_issue | 3-4 |
container_start_page | 674 |
container_title | Journal of crystal growth |
container_volume | 270 |
creator | Miraglia, Peter Q. Yilmaz, Bilge Warzywoda, Juliusz Sacco, Albert |
description | Morphological, surface and crystallographic analyses of titanosilicate ETS-4 products, with diverse habits ranging from spherulitic particles composed of submicron crystallites to large single crystals, are presented. Pole figures revealed that crystal surfaces with a-, b- and c- axes corresponded to 〈110〉, 〈010〉 and 〈001〉 directions, respectively. Thus, technologically important 8-membered ring pores and titania chains in ETS-4 run along the b-axis of single crystals and terminate at the smallest crystal face. Height of the spiral growth steps observed on {100} and {001} surfaces corresponded to the interplanar spacings associated with their crystallographic orientation, and is equivalent to the thickness of building units that form the ETS-4 framework. Data suggest that the more viscous synthesis mixtures, with a large driving force for growth, increased the two- and three-dimensional nucleation, while limiting the transport of nutrients to the growth surface. These conditions increase the tendency for stacking fault formation on {100} surfaces and small angle branching, which eventually results in spherulitic growth. The growth of high quality ETS-4 single crystals (from less viscous synthesis mixtures) occurred at lower surface nucleation rates. Data suggest that these high quality, large crystals grew due to one-dimensional nucleation at spiral hillocks, and indicate that under these conditions un-faulted growth is preferred. |
doi_str_mv | 10.1016/j.jcrysgro.2004.06.032 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29644606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022024804007705</els_id><sourcerecordid>29644606</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-5ad9636a407a86df5a41cd8d0b382d952fcb5a7aa33a08a65842785c05899a743</originalsourceid><addsrcrecordid>eNqFkD1vFDEQhi0UJC6Bv4DckG4348_1dqAoQKRIFAm1NfF673zy7R62F5Qi_x2fLh9lmpli3mfemZeQzwxaBkxfbNutSw95neaWA8gWdAuCvyMrZjrRKAB-Qla18ga4NB_Iac5bgEoyWJHH2yWN6Dyt-L-yoTvvNjiFvMsUp4HmkhZXloSRjrjEEqY1DRMtmxdgHmnEtPY011n0R2q_8WmJoQRHSyg4zTnE4LB4enV320h6uLdgzB_J-7E2_-mpn5Hf36_uLn82N79-XF9-u2mc6FhpFA69FholdGj0MCqUzA1mgHth-NArPrp7hR2iEAgGtTKSd0Y5UKbvsZPijJwf9-7T_GfxudhdyM7HiJOfl2x5r6XUoKtQH4UuzTknP9p9CjtMD5aBPaRtt_Y5bXtI24K2Ne0KfnlywOwwjgknF_IrrRmTShwMvh51vr77N_hkswt-cn4Iybtihzm8ZfUf_S-bkw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29644606</pqid></control><display><type>article</type><title>Surface growth mechanisms and structural faulting in the growth of large single and spherulitic titanosilicate ETS-4 crystals</title><source>Access via ScienceDirect (Elsevier)</source><creator>Miraglia, Peter Q. ; Yilmaz, Bilge ; Warzywoda, Juliusz ; Sacco, Albert</creator><creatorcontrib>Miraglia, Peter Q. ; Yilmaz, Bilge ; Warzywoda, Juliusz ; Sacco, Albert</creatorcontrib><description>Morphological, surface and crystallographic analyses of titanosilicate ETS-4 products, with diverse habits ranging from spherulitic particles composed of submicron crystallites to large single crystals, are presented. Pole figures revealed that crystal surfaces with a-, b- and c- axes corresponded to 〈110〉, 〈010〉 and 〈001〉 directions, respectively. Thus, technologically important 8-membered ring pores and titania chains in ETS-4 run along the b-axis of single crystals and terminate at the smallest crystal face. Height of the spiral growth steps observed on {100} and {001} surfaces corresponded to the interplanar spacings associated with their crystallographic orientation, and is equivalent to the thickness of building units that form the ETS-4 framework. Data suggest that the more viscous synthesis mixtures, with a large driving force for growth, increased the two- and three-dimensional nucleation, while limiting the transport of nutrients to the growth surface. These conditions increase the tendency for stacking fault formation on {100} surfaces and small angle branching, which eventually results in spherulitic growth. The growth of high quality ETS-4 single crystals (from less viscous synthesis mixtures) occurred at lower surface nucleation rates. Data suggest that these high quality, large crystals grew due to one-dimensional nucleation at spiral hillocks, and indicate that under these conditions un-faulted growth is preferred.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2004.06.032</identifier><identifier>CODEN: JCRGAE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A1. GADDS, A1. Growth models, A1. Surface structure ; A2. Single crystal growth ; B1. ETS-4 ; B1. Titanosilicates ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Growth from solutions ; Materials science ; Methods of crystal growth; physics of crystal growth ; Physics ; Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</subject><ispartof>Journal of crystal growth, 2004-10, Vol.270 (3-4), p.674-684</ispartof><rights>2004 Elsevier B.V.</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-5ad9636a407a86df5a41cd8d0b382d952fcb5a7aa33a08a65842785c05899a743</citedby><cites>FETCH-LOGICAL-c371t-5ad9636a407a86df5a41cd8d0b382d952fcb5a7aa33a08a65842785c05899a743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcrysgro.2004.06.032$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27926,27927,45997</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16114536$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Miraglia, Peter Q.</creatorcontrib><creatorcontrib>Yilmaz, Bilge</creatorcontrib><creatorcontrib>Warzywoda, Juliusz</creatorcontrib><creatorcontrib>Sacco, Albert</creatorcontrib><title>Surface growth mechanisms and structural faulting in the growth of large single and spherulitic titanosilicate ETS-4 crystals</title><title>Journal of crystal growth</title><description>Morphological, surface and crystallographic analyses of titanosilicate ETS-4 products, with diverse habits ranging from spherulitic particles composed of submicron crystallites to large single crystals, are presented. Pole figures revealed that crystal surfaces with a-, b- and c- axes corresponded to 〈110〉, 〈010〉 and 〈001〉 directions, respectively. Thus, technologically important 8-membered ring pores and titania chains in ETS-4 run along the b-axis of single crystals and terminate at the smallest crystal face. Height of the spiral growth steps observed on {100} and {001} surfaces corresponded to the interplanar spacings associated with their crystallographic orientation, and is equivalent to the thickness of building units that form the ETS-4 framework. Data suggest that the more viscous synthesis mixtures, with a large driving force for growth, increased the two- and three-dimensional nucleation, while limiting the transport of nutrients to the growth surface. These conditions increase the tendency for stacking fault formation on {100} surfaces and small angle branching, which eventually results in spherulitic growth. The growth of high quality ETS-4 single crystals (from less viscous synthesis mixtures) occurred at lower surface nucleation rates. Data suggest that these high quality, large crystals grew due to one-dimensional nucleation at spiral hillocks, and indicate that under these conditions un-faulted growth is preferred.</description><subject>A1. GADDS, A1. Growth models, A1. Surface structure</subject><subject>A2. Single crystal growth</subject><subject>B1. ETS-4</subject><subject>B1. Titanosilicates</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Growth from solutions</subject><subject>Materials science</subject><subject>Methods of crystal growth; physics of crystal growth</subject><subject>Physics</subject><subject>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkD1vFDEQhi0UJC6Bv4DckG4348_1dqAoQKRIFAm1NfF673zy7R62F5Qi_x2fLh9lmpli3mfemZeQzwxaBkxfbNutSw95neaWA8gWdAuCvyMrZjrRKAB-Qla18ga4NB_Iac5bgEoyWJHH2yWN6Dyt-L-yoTvvNjiFvMsUp4HmkhZXloSRjrjEEqY1DRMtmxdgHmnEtPY011n0R2q_8WmJoQRHSyg4zTnE4LB4enV320h6uLdgzB_J-7E2_-mpn5Hf36_uLn82N79-XF9-u2mc6FhpFA69FholdGj0MCqUzA1mgHth-NArPrp7hR2iEAgGtTKSd0Y5UKbvsZPijJwf9-7T_GfxudhdyM7HiJOfl2x5r6XUoKtQH4UuzTknP9p9CjtMD5aBPaRtt_Y5bXtI24K2Ne0KfnlywOwwjgknF_IrrRmTShwMvh51vr77N_hkswt-cn4Iybtihzm8ZfUf_S-bkw</recordid><startdate>20041001</startdate><enddate>20041001</enddate><creator>Miraglia, Peter Q.</creator><creator>Yilmaz, Bilge</creator><creator>Warzywoda, Juliusz</creator><creator>Sacco, Albert</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20041001</creationdate><title>Surface growth mechanisms and structural faulting in the growth of large single and spherulitic titanosilicate ETS-4 crystals</title><author>Miraglia, Peter Q. ; Yilmaz, Bilge ; Warzywoda, Juliusz ; Sacco, Albert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-5ad9636a407a86df5a41cd8d0b382d952fcb5a7aa33a08a65842785c05899a743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>A1. GADDS, A1. Growth models, A1. Surface structure</topic><topic>A2. Single crystal growth</topic><topic>B1. ETS-4</topic><topic>B1. Titanosilicates</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Growth from solutions</topic><topic>Materials science</topic><topic>Methods of crystal growth; physics of crystal growth</topic><topic>Physics</topic><topic>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miraglia, Peter Q.</creatorcontrib><creatorcontrib>Yilmaz, Bilge</creatorcontrib><creatorcontrib>Warzywoda, Juliusz</creatorcontrib><creatorcontrib>Sacco, Albert</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miraglia, Peter Q.</au><au>Yilmaz, Bilge</au><au>Warzywoda, Juliusz</au><au>Sacco, Albert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface growth mechanisms and structural faulting in the growth of large single and spherulitic titanosilicate ETS-4 crystals</atitle><jtitle>Journal of crystal growth</jtitle><date>2004-10-01</date><risdate>2004</risdate><volume>270</volume><issue>3-4</issue><spage>674</spage><epage>684</epage><pages>674-684</pages><issn>0022-0248</issn><eissn>1873-5002</eissn><coden>JCRGAE</coden><abstract>Morphological, surface and crystallographic analyses of titanosilicate ETS-4 products, with diverse habits ranging from spherulitic particles composed of submicron crystallites to large single crystals, are presented. Pole figures revealed that crystal surfaces with a-, b- and c- axes corresponded to 〈110〉, 〈010〉 and 〈001〉 directions, respectively. Thus, technologically important 8-membered ring pores and titania chains in ETS-4 run along the b-axis of single crystals and terminate at the smallest crystal face. Height of the spiral growth steps observed on {100} and {001} surfaces corresponded to the interplanar spacings associated with their crystallographic orientation, and is equivalent to the thickness of building units that form the ETS-4 framework. Data suggest that the more viscous synthesis mixtures, with a large driving force for growth, increased the two- and three-dimensional nucleation, while limiting the transport of nutrients to the growth surface. These conditions increase the tendency for stacking fault formation on {100} surfaces and small angle branching, which eventually results in spherulitic growth. The growth of high quality ETS-4 single crystals (from less viscous synthesis mixtures) occurred at lower surface nucleation rates. Data suggest that these high quality, large crystals grew due to one-dimensional nucleation at spiral hillocks, and indicate that under these conditions un-faulted growth is preferred.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2004.06.032</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0248 |
ispartof | Journal of crystal growth, 2004-10, Vol.270 (3-4), p.674-684 |
issn | 0022-0248 1873-5002 |
language | eng |
recordid | cdi_proquest_miscellaneous_29644606 |
source | Access via ScienceDirect (Elsevier) |
subjects | A1. GADDS, A1. Growth models, A1. Surface structure A2. Single crystal growth B1. ETS-4 B1. Titanosilicates Cross-disciplinary physics: materials science rheology Exact sciences and technology Growth from solutions Materials science Methods of crystal growth physics of crystal growth Physics Theory and models of crystal growth physics of crystal growth, crystal morphology and orientation |
title | Surface growth mechanisms and structural faulting in the growth of large single and spherulitic titanosilicate ETS-4 crystals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T02%3A11%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20growth%20mechanisms%20and%20structural%20faulting%20in%20the%20growth%20of%20large%20single%20and%20spherulitic%20titanosilicate%20ETS-4%20crystals&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Miraglia,%20Peter%20Q.&rft.date=2004-10-01&rft.volume=270&rft.issue=3-4&rft.spage=674&rft.epage=684&rft.pages=674-684&rft.issn=0022-0248&rft.eissn=1873-5002&rft.coden=JCRGAE&rft_id=info:doi/10.1016/j.jcrysgro.2004.06.032&rft_dat=%3Cproquest_cross%3E29644606%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29644606&rft_id=info:pmid/&rft_els_id=S0022024804007705&rfr_iscdi=true |