Stability for impulsive delay differential equations
In this paper, the stability for the scalar impulsive delay differential equation y ′ ( t ) + a ( t ) y ( t ) + F ( t , y ( · ) ) = 0 , t ⩾ 0 , t ≠ τ k , y ( τ k + ) - y ( τ k ) = I k ( y ( τ k ) ) , k = 1 , 2 , … , lim k → ∞ τ k = ∞ , where delay arguments may be bounded or unbounded is investigate...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2005-10, Vol.63 (1), p.66-80 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 80 |
---|---|
container_issue | 1 |
container_start_page | 66 |
container_title | Nonlinear analysis |
container_volume | 63 |
creator | Yan, Jurang |
description | In this paper, the stability for the scalar impulsive delay differential equation
y
′
(
t
)
+
a
(
t
)
y
(
t
)
+
F
(
t
,
y
(
·
)
)
=
0
,
t
⩾
0
,
t
≠
τ
k
,
y
(
τ
k
+
)
-
y
(
τ
k
)
=
I
k
(
y
(
τ
k
)
)
,
k
=
1
,
2
,
…
,
lim
k
→
∞
τ
k
=
∞
,
where delay arguments may be bounded or unbounded is investigated. Some new stability theorems are established which improve and extend several known results in the literature. |
doi_str_mv | 10.1016/j.na.2005.05.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29639888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X05004931</els_id><sourcerecordid>29639888</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-a6a9103d859d7bf42c319fad3b6184c12a87509f7787663a6835932a80d799173</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKt7l7PR3YzJZPJyJ8UXFFyo4C7c5gEp6UybzBT6752hBVfCgQuX75z7QOiW4Ipgwh_WVQtVjTGrJmFyhmZEClqymrBzNMOU1yVr-M8lusp5jUdCUD5DzWcPqxBDfyh8l4qw2Q4xh70rrItwKGzw3iXX9gFi4XYD9KFr8zW68BCzuznVOfp-ef5avJXLj9f3xdOyNJSxvgQOimBqJVNWrHxTG0qUB0tXnMjGkBqkYFh5IaTgnAKXlCk6drEVSo37zdH9MXebut3gcq83IRsXI7SuG7KuFadKSjmC-Aia1OWcnNfbFDaQDppgPb1Hr3ULenqPnoTJaLk7ZUM2EH2C1oT85xNY0lpM3OORc-Oh--CSzia41jgbkjO9tl34f8gviQt4BA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29639888</pqid></control><display><type>article</type><title>Stability for impulsive delay differential equations</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Yan, Jurang</creator><creatorcontrib>Yan, Jurang</creatorcontrib><description>In this paper, the stability for the scalar impulsive delay differential equation
y
′
(
t
)
+
a
(
t
)
y
(
t
)
+
F
(
t
,
y
(
·
)
)
=
0
,
t
⩾
0
,
t
≠
τ
k
,
y
(
τ
k
+
)
-
y
(
τ
k
)
=
I
k
(
y
(
τ
k
)
)
,
k
=
1
,
2
,
…
,
lim
k
→
∞
τ
k
=
∞
,
where delay arguments may be bounded or unbounded is investigated. Some new stability theorems are established which improve and extend several known results in the literature.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2005.05.001</identifier><identifier>CODEN: NOANDD</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Delay differential equation ; Exact sciences and technology ; Impulse effect ; Mathematical analysis ; Mathematics ; Nonlinear ; Ordinary differential equations ; Sciences and techniques of general use ; Stability</subject><ispartof>Nonlinear analysis, 2005-10, Vol.63 (1), p.66-80</ispartof><rights>2005 Elsevier Ltd</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-a6a9103d859d7bf42c319fad3b6184c12a87509f7787663a6835932a80d799173</citedby><cites>FETCH-LOGICAL-c355t-a6a9103d859d7bf42c319fad3b6184c12a87509f7787663a6835932a80d799173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.na.2005.05.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17083271$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yan, Jurang</creatorcontrib><title>Stability for impulsive delay differential equations</title><title>Nonlinear analysis</title><description>In this paper, the stability for the scalar impulsive delay differential equation
y
′
(
t
)
+
a
(
t
)
y
(
t
)
+
F
(
t
,
y
(
·
)
)
=
0
,
t
⩾
0
,
t
≠
τ
k
,
y
(
τ
k
+
)
-
y
(
τ
k
)
=
I
k
(
y
(
τ
k
)
)
,
k
=
1
,
2
,
…
,
lim
k
→
∞
τ
k
=
∞
,
where delay arguments may be bounded or unbounded is investigated. Some new stability theorems are established which improve and extend several known results in the literature.</description><subject>Delay differential equation</subject><subject>Exact sciences and technology</subject><subject>Impulse effect</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Nonlinear</subject><subject>Ordinary differential equations</subject><subject>Sciences and techniques of general use</subject><subject>Stability</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKt7l7PR3YzJZPJyJ8UXFFyo4C7c5gEp6UybzBT6752hBVfCgQuX75z7QOiW4Ipgwh_WVQtVjTGrJmFyhmZEClqymrBzNMOU1yVr-M8lusp5jUdCUD5DzWcPqxBDfyh8l4qw2Q4xh70rrItwKGzw3iXX9gFi4XYD9KFr8zW68BCzuznVOfp-ef5avJXLj9f3xdOyNJSxvgQOimBqJVNWrHxTG0qUB0tXnMjGkBqkYFh5IaTgnAKXlCk6drEVSo37zdH9MXebut3gcq83IRsXI7SuG7KuFadKSjmC-Aia1OWcnNfbFDaQDppgPb1Hr3ULenqPnoTJaLk7ZUM2EH2C1oT85xNY0lpM3OORc-Oh--CSzia41jgbkjO9tl34f8gviQt4BA</recordid><startdate>20051001</startdate><enddate>20051001</enddate><creator>Yan, Jurang</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20051001</creationdate><title>Stability for impulsive delay differential equations</title><author>Yan, Jurang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-a6a9103d859d7bf42c319fad3b6184c12a87509f7787663a6835932a80d799173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Delay differential equation</topic><topic>Exact sciences and technology</topic><topic>Impulse effect</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Nonlinear</topic><topic>Ordinary differential equations</topic><topic>Sciences and techniques of general use</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Jurang</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Jurang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability for impulsive delay differential equations</atitle><jtitle>Nonlinear analysis</jtitle><date>2005-10-01</date><risdate>2005</risdate><volume>63</volume><issue>1</issue><spage>66</spage><epage>80</epage><pages>66-80</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><coden>NOANDD</coden><abstract>In this paper, the stability for the scalar impulsive delay differential equation
y
′
(
t
)
+
a
(
t
)
y
(
t
)
+
F
(
t
,
y
(
·
)
)
=
0
,
t
⩾
0
,
t
≠
τ
k
,
y
(
τ
k
+
)
-
y
(
τ
k
)
=
I
k
(
y
(
τ
k
)
)
,
k
=
1
,
2
,
…
,
lim
k
→
∞
τ
k
=
∞
,
where delay arguments may be bounded or unbounded is investigated. Some new stability theorems are established which improve and extend several known results in the literature.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2005.05.001</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0362-546X |
ispartof | Nonlinear analysis, 2005-10, Vol.63 (1), p.66-80 |
issn | 0362-546X 1873-5215 |
language | eng |
recordid | cdi_proquest_miscellaneous_29639888 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Delay differential equation Exact sciences and technology Impulse effect Mathematical analysis Mathematics Nonlinear Ordinary differential equations Sciences and techniques of general use Stability |
title | Stability for impulsive delay differential equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A12%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20for%20impulsive%20delay%20differential%20equations&rft.jtitle=Nonlinear%20analysis&rft.au=Yan,%20Jurang&rft.date=2005-10-01&rft.volume=63&rft.issue=1&rft.spage=66&rft.epage=80&rft.pages=66-80&rft.issn=0362-546X&rft.eissn=1873-5215&rft.coden=NOANDD&rft_id=info:doi/10.1016/j.na.2005.05.001&rft_dat=%3Cproquest_cross%3E29639888%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29639888&rft_id=info:pmid/&rft_els_id=S0362546X05004931&rfr_iscdi=true |