Stability for impulsive delay differential equations

In this paper, the stability for the scalar impulsive delay differential equation y ′ ( t ) + a ( t ) y ( t ) + F ( t , y ( · ) ) = 0 , t ⩾ 0 , t ≠ τ k , y ( τ k + ) - y ( τ k ) = I k ( y ( τ k ) ) , k = 1 , 2 , … , lim k → ∞ τ k = ∞ , where delay arguments may be bounded or unbounded is investigate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2005-10, Vol.63 (1), p.66-80
1. Verfasser: Yan, Jurang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 80
container_issue 1
container_start_page 66
container_title Nonlinear analysis
container_volume 63
creator Yan, Jurang
description In this paper, the stability for the scalar impulsive delay differential equation y ′ ( t ) + a ( t ) y ( t ) + F ( t , y ( · ) ) = 0 , t ⩾ 0 , t ≠ τ k , y ( τ k + ) - y ( τ k ) = I k ( y ( τ k ) ) , k = 1 , 2 , … , lim k → ∞ τ k = ∞ , where delay arguments may be bounded or unbounded is investigated. Some new stability theorems are established which improve and extend several known results in the literature.
doi_str_mv 10.1016/j.na.2005.05.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29639888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X05004931</els_id><sourcerecordid>29639888</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-a6a9103d859d7bf42c319fad3b6184c12a87509f7787663a6835932a80d799173</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKt7l7PR3YzJZPJyJ8UXFFyo4C7c5gEp6UybzBT6752hBVfCgQuX75z7QOiW4Ipgwh_WVQtVjTGrJmFyhmZEClqymrBzNMOU1yVr-M8lusp5jUdCUD5DzWcPqxBDfyh8l4qw2Q4xh70rrItwKGzw3iXX9gFi4XYD9KFr8zW68BCzuznVOfp-ef5avJXLj9f3xdOyNJSxvgQOimBqJVNWrHxTG0qUB0tXnMjGkBqkYFh5IaTgnAKXlCk6drEVSo37zdH9MXebut3gcq83IRsXI7SuG7KuFadKSjmC-Aia1OWcnNfbFDaQDppgPb1Hr3ULenqPnoTJaLk7ZUM2EH2C1oT85xNY0lpM3OORc-Oh--CSzia41jgbkjO9tl34f8gviQt4BA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29639888</pqid></control><display><type>article</type><title>Stability for impulsive delay differential equations</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Yan, Jurang</creator><creatorcontrib>Yan, Jurang</creatorcontrib><description>In this paper, the stability for the scalar impulsive delay differential equation y ′ ( t ) + a ( t ) y ( t ) + F ( t , y ( · ) ) = 0 , t ⩾ 0 , t ≠ τ k , y ( τ k + ) - y ( τ k ) = I k ( y ( τ k ) ) , k = 1 , 2 , … , lim k → ∞ τ k = ∞ , where delay arguments may be bounded or unbounded is investigated. Some new stability theorems are established which improve and extend several known results in the literature.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2005.05.001</identifier><identifier>CODEN: NOANDD</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Delay differential equation ; Exact sciences and technology ; Impulse effect ; Mathematical analysis ; Mathematics ; Nonlinear ; Ordinary differential equations ; Sciences and techniques of general use ; Stability</subject><ispartof>Nonlinear analysis, 2005-10, Vol.63 (1), p.66-80</ispartof><rights>2005 Elsevier Ltd</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-a6a9103d859d7bf42c319fad3b6184c12a87509f7787663a6835932a80d799173</citedby><cites>FETCH-LOGICAL-c355t-a6a9103d859d7bf42c319fad3b6184c12a87509f7787663a6835932a80d799173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.na.2005.05.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17083271$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yan, Jurang</creatorcontrib><title>Stability for impulsive delay differential equations</title><title>Nonlinear analysis</title><description>In this paper, the stability for the scalar impulsive delay differential equation y ′ ( t ) + a ( t ) y ( t ) + F ( t , y ( · ) ) = 0 , t ⩾ 0 , t ≠ τ k , y ( τ k + ) - y ( τ k ) = I k ( y ( τ k ) ) , k = 1 , 2 , … , lim k → ∞ τ k = ∞ , where delay arguments may be bounded or unbounded is investigated. Some new stability theorems are established which improve and extend several known results in the literature.</description><subject>Delay differential equation</subject><subject>Exact sciences and technology</subject><subject>Impulse effect</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Nonlinear</subject><subject>Ordinary differential equations</subject><subject>Sciences and techniques of general use</subject><subject>Stability</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKt7l7PR3YzJZPJyJ8UXFFyo4C7c5gEp6UybzBT6752hBVfCgQuX75z7QOiW4Ipgwh_WVQtVjTGrJmFyhmZEClqymrBzNMOU1yVr-M8lusp5jUdCUD5DzWcPqxBDfyh8l4qw2Q4xh70rrItwKGzw3iXX9gFi4XYD9KFr8zW68BCzuznVOfp-ef5avJXLj9f3xdOyNJSxvgQOimBqJVNWrHxTG0qUB0tXnMjGkBqkYFh5IaTgnAKXlCk6drEVSo37zdH9MXebut3gcq83IRsXI7SuG7KuFadKSjmC-Aia1OWcnNfbFDaQDppgPb1Hr3ULenqPnoTJaLk7ZUM2EH2C1oT85xNY0lpM3OORc-Oh--CSzia41jgbkjO9tl34f8gviQt4BA</recordid><startdate>20051001</startdate><enddate>20051001</enddate><creator>Yan, Jurang</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20051001</creationdate><title>Stability for impulsive delay differential equations</title><author>Yan, Jurang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-a6a9103d859d7bf42c319fad3b6184c12a87509f7787663a6835932a80d799173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Delay differential equation</topic><topic>Exact sciences and technology</topic><topic>Impulse effect</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Nonlinear</topic><topic>Ordinary differential equations</topic><topic>Sciences and techniques of general use</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Jurang</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Jurang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability for impulsive delay differential equations</atitle><jtitle>Nonlinear analysis</jtitle><date>2005-10-01</date><risdate>2005</risdate><volume>63</volume><issue>1</issue><spage>66</spage><epage>80</epage><pages>66-80</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><coden>NOANDD</coden><abstract>In this paper, the stability for the scalar impulsive delay differential equation y ′ ( t ) + a ( t ) y ( t ) + F ( t , y ( · ) ) = 0 , t ⩾ 0 , t ≠ τ k , y ( τ k + ) - y ( τ k ) = I k ( y ( τ k ) ) , k = 1 , 2 , … , lim k → ∞ τ k = ∞ , where delay arguments may be bounded or unbounded is investigated. Some new stability theorems are established which improve and extend several known results in the literature.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2005.05.001</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0362-546X
ispartof Nonlinear analysis, 2005-10, Vol.63 (1), p.66-80
issn 0362-546X
1873-5215
language eng
recordid cdi_proquest_miscellaneous_29639888
source ScienceDirect Journals (5 years ago - present)
subjects Delay differential equation
Exact sciences and technology
Impulse effect
Mathematical analysis
Mathematics
Nonlinear
Ordinary differential equations
Sciences and techniques of general use
Stability
title Stability for impulsive delay differential equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A12%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20for%20impulsive%20delay%20differential%20equations&rft.jtitle=Nonlinear%20analysis&rft.au=Yan,%20Jurang&rft.date=2005-10-01&rft.volume=63&rft.issue=1&rft.spage=66&rft.epage=80&rft.pages=66-80&rft.issn=0362-546X&rft.eissn=1873-5215&rft.coden=NOANDD&rft_id=info:doi/10.1016/j.na.2005.05.001&rft_dat=%3Cproquest_cross%3E29639888%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29639888&rft_id=info:pmid/&rft_els_id=S0362546X05004931&rfr_iscdi=true