Solving the p-Median Problem with a Semi-Lagrangian Relaxation

Lagrangian relaxation is commonly used in combinatorial optimization to generate lower bounds for a minimization problem. We study a modified Lagrangian relaxation which generates an optimal integer solution. We call it semi-Lagrangian relaxation and illustrate its practical value by solving large-s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational optimization and applications 2006-10, Vol.35 (2), p.239-260
Hauptverfasser: Beltran, C, Tadonki, C, Vial, J Ph
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 260
container_issue 2
container_start_page 239
container_title Computational optimization and applications
container_volume 35
creator Beltran, C
Tadonki, C
Vial, J Ph
description Lagrangian relaxation is commonly used in combinatorial optimization to generate lower bounds for a minimization problem. We study a modified Lagrangian relaxation which generates an optimal integer solution. We call it semi-Lagrangian relaxation and illustrate its practical value by solving large-scale instances of the p-median problem.
doi_str_mv 10.1007/s10589-006-6513-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29637486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29637486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-5a4a3350fefcc4091fe9f8a34d1c3832566532b965673d4838e08204ad96d74a3</originalsourceid><addsrcrecordid>eNqNkEtLAzEUhYMoWKs_wN3gwl30JjfPjSDFF1QUq-uQzmTaKfOoydTHv3dKXblydRbnuxfOR8gpgwsGoC8TA2ksBVBUSYZU7ZERkxopN1bskxFYPjQAeEiOUloBgNXIR-Rq1tUfVbvI-mXI1vQxFJVvs-fYzevQZJ9Vv8x8NgtNRad-EX272NYvofZfvq-69pgclL5O4eQ3x-Tt9uZ1ck-nT3cPk-spzVHrnkovPKKEMpR5LsCyMtjSeBQFy9Egl0pJ5HOrpNJYCIMmgOEgfGFVoYfbMTnf_V3H7n0TUu-aKuWhrn0buk1y3CrUwqh_gCAVMD2AZ3_AVbeJ7TDCcSaVlEzyAWI7KI9dSjGUbh2rxsdvx8Btvbuddzd4d1vvTuEPcO9zCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215655152</pqid></control><display><type>article</type><title>Solving the p-Median Problem with a Semi-Lagrangian Relaxation</title><source>SpringerNature Journals</source><creator>Beltran, C ; Tadonki, C ; Vial, J Ph</creator><creatorcontrib>Beltran, C ; Tadonki, C ; Vial, J Ph</creatorcontrib><description>Lagrangian relaxation is commonly used in combinatorial optimization to generate lower bounds for a minimization problem. We study a modified Lagrangian relaxation which generates an optimal integer solution. We call it semi-Lagrangian relaxation and illustrate its practical value by solving large-scale instances of the p-median problem.</description><identifier>ISSN: 0926-6003</identifier><identifier>EISSN: 1573-2894</identifier><identifier>DOI: 10.1007/s10589-006-6513-6</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Equality ; Integer programming ; Optimization ; Sensitivity analysis ; Studies</subject><ispartof>Computational optimization and applications, 2006-10, Vol.35 (2), p.239-260</ispartof><rights>Springer Science + Business Media, LLC 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-5a4a3350fefcc4091fe9f8a34d1c3832566532b965673d4838e08204ad96d74a3</citedby><cites>FETCH-LOGICAL-c377t-5a4a3350fefcc4091fe9f8a34d1c3832566532b965673d4838e08204ad96d74a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27926,27927</link.rule.ids></links><search><creatorcontrib>Beltran, C</creatorcontrib><creatorcontrib>Tadonki, C</creatorcontrib><creatorcontrib>Vial, J Ph</creatorcontrib><title>Solving the p-Median Problem with a Semi-Lagrangian Relaxation</title><title>Computational optimization and applications</title><description>Lagrangian relaxation is commonly used in combinatorial optimization to generate lower bounds for a minimization problem. We study a modified Lagrangian relaxation which generates an optimal integer solution. We call it semi-Lagrangian relaxation and illustrate its practical value by solving large-scale instances of the p-median problem.</description><subject>Equality</subject><subject>Integer programming</subject><subject>Optimization</subject><subject>Sensitivity analysis</subject><subject>Studies</subject><issn>0926-6003</issn><issn>1573-2894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkEtLAzEUhYMoWKs_wN3gwl30JjfPjSDFF1QUq-uQzmTaKfOoydTHv3dKXblydRbnuxfOR8gpgwsGoC8TA2ksBVBUSYZU7ZERkxopN1bskxFYPjQAeEiOUloBgNXIR-Rq1tUfVbvI-mXI1vQxFJVvs-fYzevQZJ9Vv8x8NgtNRad-EX272NYvofZfvq-69pgclL5O4eQ3x-Tt9uZ1ck-nT3cPk-spzVHrnkovPKKEMpR5LsCyMtjSeBQFy9Egl0pJ5HOrpNJYCIMmgOEgfGFVoYfbMTnf_V3H7n0TUu-aKuWhrn0buk1y3CrUwqh_gCAVMD2AZ3_AVbeJ7TDCcSaVlEzyAWI7KI9dSjGUbh2rxsdvx8Btvbuddzd4d1vvTuEPcO9zCA</recordid><startdate>20061001</startdate><enddate>20061001</enddate><creator>Beltran, C</creator><creator>Tadonki, C</creator><creator>Vial, J Ph</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7TB</scope><scope>FR3</scope></search><sort><creationdate>20061001</creationdate><title>Solving the p-Median Problem with a Semi-Lagrangian Relaxation</title><author>Beltran, C ; Tadonki, C ; Vial, J Ph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-5a4a3350fefcc4091fe9f8a34d1c3832566532b965673d4838e08204ad96d74a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Equality</topic><topic>Integer programming</topic><topic>Optimization</topic><topic>Sensitivity analysis</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beltran, C</creatorcontrib><creatorcontrib>Tadonki, C</creatorcontrib><creatorcontrib>Vial, J Ph</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><jtitle>Computational optimization and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beltran, C</au><au>Tadonki, C</au><au>Vial, J Ph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solving the p-Median Problem with a Semi-Lagrangian Relaxation</atitle><jtitle>Computational optimization and applications</jtitle><date>2006-10-01</date><risdate>2006</risdate><volume>35</volume><issue>2</issue><spage>239</spage><epage>260</epage><pages>239-260</pages><issn>0926-6003</issn><eissn>1573-2894</eissn><abstract>Lagrangian relaxation is commonly used in combinatorial optimization to generate lower bounds for a minimization problem. We study a modified Lagrangian relaxation which generates an optimal integer solution. We call it semi-Lagrangian relaxation and illustrate its practical value by solving large-scale instances of the p-median problem.</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1007/s10589-006-6513-6</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0926-6003
ispartof Computational optimization and applications, 2006-10, Vol.35 (2), p.239-260
issn 0926-6003
1573-2894
language eng
recordid cdi_proquest_miscellaneous_29637486
source SpringerNature Journals
subjects Equality
Integer programming
Optimization
Sensitivity analysis
Studies
title Solving the p-Median Problem with a Semi-Lagrangian Relaxation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T11%3A36%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solving%20the%20p-Median%20Problem%20with%20a%20Semi-Lagrangian%20Relaxation&rft.jtitle=Computational%20optimization%20and%20applications&rft.au=Beltran,%20C&rft.date=2006-10-01&rft.volume=35&rft.issue=2&rft.spage=239&rft.epage=260&rft.pages=239-260&rft.issn=0926-6003&rft.eissn=1573-2894&rft_id=info:doi/10.1007/s10589-006-6513-6&rft_dat=%3Cproquest_cross%3E29637486%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215655152&rft_id=info:pmid/&rfr_iscdi=true