Stable crack growth in nanostructured Li-batteries

The formation of damage, which results from the large volume expansion of the active sites during electrochemical cycling, in rechargeable Li-batteries, is modelled from a fracture mechanics viewpoint to facilitate the selection of the most effective electrode materials and configurations. The prese...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources 2005-04, Vol.143 (1), p.203-211
Hauptverfasser: Aifantis, K.E., Dempsey, J.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 211
container_issue 1
container_start_page 203
container_title Journal of power sources
container_volume 143
creator Aifantis, K.E.
Dempsey, J.P.
description The formation of damage, which results from the large volume expansion of the active sites during electrochemical cycling, in rechargeable Li-batteries, is modelled from a fracture mechanics viewpoint to facilitate the selection of the most effective electrode materials and configurations. The present study is a first step towards examining stable cracking in such high-energy storage devices, by considering three different configurations at the nanoscale, which are currently at an experimental stage. As a result, stability diagrams concerning crack growth are constructed and compared for the following cases: (a) the electrodes are thin films, (b) the Li-insertion sites in the anode are nanofibre-like inclusions, (c) the active sites in both electrodes are spherical.
doi_str_mv 10.1016/j.jpowsour.2004.11.037
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29636055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775304011954</els_id><sourcerecordid>29636055</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-e21953447bd6e411aa85d570c84cf723814eac540a2d07ba2a2eee104cfc59ff3</originalsourceid><addsrcrecordid>eNqFkE1PwzAMhiMEEmPwF1AvcGuJ89F0N9DElzSJA3CO0tSFjK4ZScrEv6fThjhysmQ_ry0_hJwDLYBCebUslmu_iX4IBaNUFAAF5eqATKBSPGdKykMyGTtVrpTkx-QkxiWlFEDRCWHPydQdZjYY-5G9Bb9J75nrs970PqYw2DQEbLKFy2uTEgaH8ZQctaaLeLavU_J6d_syf8gXT_eP85tFbrniKUcGM8mFUHVTogAwppKNVNRWwraK8QoEGisFNayhqjbMMEQEOk6tnLUtn5LL3d518J8DxqRXLlrsOtOjH6Jms5KXVMoRLHegDT7GgK1eB7cy4VsD1VtFeql_FemtIg2gRyFj8GJ_wURrujaY3rr4ly5VySWIkbvecTi---Uw6Ggd9hYbF9Am3Xj336kfk82AbQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29636055</pqid></control><display><type>article</type><title>Stable crack growth in nanostructured Li-batteries</title><source>Access via ScienceDirect (Elsevier)</source><creator>Aifantis, K.E. ; Dempsey, J.P.</creator><creatorcontrib>Aifantis, K.E. ; Dempsey, J.P.</creatorcontrib><description>The formation of damage, which results from the large volume expansion of the active sites during electrochemical cycling, in rechargeable Li-batteries, is modelled from a fracture mechanics viewpoint to facilitate the selection of the most effective electrode materials and configurations. The present study is a first step towards examining stable cracking in such high-energy storage devices, by considering three different configurations at the nanoscale, which are currently at an experimental stage. As a result, stability diagrams concerning crack growth are constructed and compared for the following cases: (a) the electrodes are thin films, (b) the Li-insertion sites in the anode are nanofibre-like inclusions, (c) the active sites in both electrodes are spherical.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2004.11.037</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Applied sciences ; Cracking ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fracture mechanics ; Fuel cells ; Li-batteries</subject><ispartof>Journal of power sources, 2005-04, Vol.143 (1), p.203-211</ispartof><rights>2004 Elsevier B.V.</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-e21953447bd6e411aa85d570c84cf723814eac540a2d07ba2a2eee104cfc59ff3</citedby><cites>FETCH-LOGICAL-c373t-e21953447bd6e411aa85d570c84cf723814eac540a2d07ba2a2eee104cfc59ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jpowsour.2004.11.037$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16763514$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Aifantis, K.E.</creatorcontrib><creatorcontrib>Dempsey, J.P.</creatorcontrib><title>Stable crack growth in nanostructured Li-batteries</title><title>Journal of power sources</title><description>The formation of damage, which results from the large volume expansion of the active sites during electrochemical cycling, in rechargeable Li-batteries, is modelled from a fracture mechanics viewpoint to facilitate the selection of the most effective electrode materials and configurations. The present study is a first step towards examining stable cracking in such high-energy storage devices, by considering three different configurations at the nanoscale, which are currently at an experimental stage. As a result, stability diagrams concerning crack growth are constructed and compared for the following cases: (a) the electrodes are thin films, (b) the Li-insertion sites in the anode are nanofibre-like inclusions, (c) the active sites in both electrodes are spherical.</description><subject>Applied sciences</subject><subject>Cracking</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fracture mechanics</subject><subject>Fuel cells</subject><subject>Li-batteries</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PwzAMhiMEEmPwF1AvcGuJ89F0N9DElzSJA3CO0tSFjK4ZScrEv6fThjhysmQ_ry0_hJwDLYBCebUslmu_iX4IBaNUFAAF5eqATKBSPGdKykMyGTtVrpTkx-QkxiWlFEDRCWHPydQdZjYY-5G9Bb9J75nrs970PqYw2DQEbLKFy2uTEgaH8ZQctaaLeLavU_J6d_syf8gXT_eP85tFbrniKUcGM8mFUHVTogAwppKNVNRWwraK8QoEGisFNayhqjbMMEQEOk6tnLUtn5LL3d518J8DxqRXLlrsOtOjH6Jms5KXVMoRLHegDT7GgK1eB7cy4VsD1VtFeql_FemtIg2gRyFj8GJ_wURrujaY3rr4ly5VySWIkbvecTi---Uw6Ggd9hYbF9Am3Xj336kfk82AbQ</recordid><startdate>20050427</startdate><enddate>20050427</enddate><creator>Aifantis, K.E.</creator><creator>Dempsey, J.P.</creator><general>Elsevier B.V</general><general>Elsevier Sequoia</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20050427</creationdate><title>Stable crack growth in nanostructured Li-batteries</title><author>Aifantis, K.E. ; Dempsey, J.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-e21953447bd6e411aa85d570c84cf723814eac540a2d07ba2a2eee104cfc59ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Cracking</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fracture mechanics</topic><topic>Fuel cells</topic><topic>Li-batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aifantis, K.E.</creatorcontrib><creatorcontrib>Dempsey, J.P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aifantis, K.E.</au><au>Dempsey, J.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stable crack growth in nanostructured Li-batteries</atitle><jtitle>Journal of power sources</jtitle><date>2005-04-27</date><risdate>2005</risdate><volume>143</volume><issue>1</issue><spage>203</spage><epage>211</epage><pages>203-211</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>The formation of damage, which results from the large volume expansion of the active sites during electrochemical cycling, in rechargeable Li-batteries, is modelled from a fracture mechanics viewpoint to facilitate the selection of the most effective electrode materials and configurations. The present study is a first step towards examining stable cracking in such high-energy storage devices, by considering three different configurations at the nanoscale, which are currently at an experimental stage. As a result, stability diagrams concerning crack growth are constructed and compared for the following cases: (a) the electrodes are thin films, (b) the Li-insertion sites in the anode are nanofibre-like inclusions, (c) the active sites in both electrodes are spherical.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2004.11.037</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-7753
ispartof Journal of power sources, 2005-04, Vol.143 (1), p.203-211
issn 0378-7753
1873-2755
language eng
recordid cdi_proquest_miscellaneous_29636055
source Access via ScienceDirect (Elsevier)
subjects Applied sciences
Cracking
Direct energy conversion and energy accumulation
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
Energy
Energy. Thermal use of fuels
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Fracture mechanics
Fuel cells
Li-batteries
title Stable crack growth in nanostructured Li-batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T20%3A15%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stable%20crack%20growth%20in%20nanostructured%20Li-batteries&rft.jtitle=Journal%20of%20power%20sources&rft.au=Aifantis,%20K.E.&rft.date=2005-04-27&rft.volume=143&rft.issue=1&rft.spage=203&rft.epage=211&rft.pages=203-211&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2004.11.037&rft_dat=%3Cproquest_cross%3E29636055%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29636055&rft_id=info:pmid/&rft_els_id=S0378775304011954&rfr_iscdi=true