A spectroscopic method to determine the electron temperature of an argon surface wave sustained plasmas using a collision radiative model

A method is presented to determine the electron temperature in a low pressure argon plasma using emission spectroscopic measurements and a collisional radiative (CR) model. Absolute line intensity measurements are made in order to construct the atomic state distribution function. In addition to the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. D, Applied physics Applied physics, 2006-10, Vol.39 (19), p.4194-4203
Hauptverfasser: Vries, N d, Iordanova, E, Hartgers, A, Veldhuizen, E M v, Donker, M J v d, Mullen, J J A M v d
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4203
container_issue 19
container_start_page 4194
container_title Journal of physics. D, Applied physics
container_volume 39
creator Vries, N d
Iordanova, E
Hartgers, A
Veldhuizen, E M v
Donker, M J v d
Mullen, J J A M v d
description A method is presented to determine the electron temperature in a low pressure argon plasma using emission spectroscopic measurements and a collisional radiative (CR) model. Absolute line intensity measurements are made in order to construct the atomic state distribution function. In addition to the excited states, the ground state density is also taken into account. Because of this, the excitation temperature can be determined with high precision. A CR-model has been used to determine the degree of equilibrium departure and to obtain the relationship between the excitation temperature and the electron temperature. This method is applied to a microwave plasma which has been generated inside a quartz tube using a surfatron device. The densities of argon levels close to the continuum are used to get an estimated value of the electron density. These values are used as input data for the CR-model. For an argon pressure of 6 mbar, the 4p level densities vary between 8 X 1014 and 6 X 1015 m-3. Using the estimated values for the electron density, between 2 X 1019 and 3 X 1019 m-3, the electron temperature was found to range between 1.15 and 1.20 eV. An extensive error analysis showed that the relative error in the electron temperature is less than 6%.
doi_str_mv 10.1088/0022-3727/39/19/011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29628097</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29628097</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-d9b5cf917052be1e36fb8fe0c3f4dcfa91fd1cab90f30252a740b4df421554053</originalsourceid><addsrcrecordid>eNp9kE1rFTEUhoNY8Fr7C9xko4vC9OZjvrIsxapQcKPrcCY5aSOZyZhkFH-C_9pcb6mLlq4OOXnel8NDyFvOLjgbxz1jQjRyEMNeqj1Xe8b5C7LjsudN3_byJdk9EK_I65y_M8a6fuQ78ueS5hVNSTGbuHpDZyx30dISqcWCafYL0nKHFMM_aqEF5xUTlC0hjY7CQiHd1n3ekgOD9Bf8xPrIBWrU0jVAniHTLfvllgI1MQSffQ0ksB6Kr_QcLYY35MRByHh2P0_Jt-sPX68-NTdfPn6-urxpTNux0lg1dcYpPrBOTMhR9m4aHTIjXWuNA8Wd5QYmxZxkohMwtGxqrWsF77qWdfKUvD_2rin-2DAXPftsMARYMG5ZC9WLkamhgvIImionJ3R6TX6G9Ftzpg_a9UGqPkjVUmmudNVeU-_u6yEbCC7BYnz-Hx15L1XLKnd-5HxcH36fKNSrdRW-eAw_d8VfIBygkA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29628097</pqid></control><display><type>article</type><title>A spectroscopic method to determine the electron temperature of an argon surface wave sustained plasmas using a collision radiative model</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Vries, N d ; Iordanova, E ; Hartgers, A ; Veldhuizen, E M v ; Donker, M J v d ; Mullen, J J A M v d</creator><creatorcontrib>Vries, N d ; Iordanova, E ; Hartgers, A ; Veldhuizen, E M v ; Donker, M J v d ; Mullen, J J A M v d</creatorcontrib><description>A method is presented to determine the electron temperature in a low pressure argon plasma using emission spectroscopic measurements and a collisional radiative (CR) model. Absolute line intensity measurements are made in order to construct the atomic state distribution function. In addition to the excited states, the ground state density is also taken into account. Because of this, the excitation temperature can be determined with high precision. A CR-model has been used to determine the degree of equilibrium departure and to obtain the relationship between the excitation temperature and the electron temperature. This method is applied to a microwave plasma which has been generated inside a quartz tube using a surfatron device. The densities of argon levels close to the continuum are used to get an estimated value of the electron density. These values are used as input data for the CR-model. For an argon pressure of 6 mbar, the 4p level densities vary between 8 X 1014 and 6 X 1015 m-3. Using the estimated values for the electron density, between 2 X 1019 and 3 X 1019 m-3, the electron temperature was found to range between 1.15 and 1.20 eV. An extensive error analysis showed that the relative error in the electron temperature is less than 6%.</description><identifier>ISSN: 0022-3727</identifier><identifier>EISSN: 1361-6463</identifier><identifier>DOI: 10.1088/0022-3727/39/19/011</identifier><identifier>CODEN: JPAPBE</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Exact sciences and technology ; Optical (ultraviolet, visible, infrared) measurements ; Physics ; Physics of gases, plasmas and electric discharges ; Physics of plasmas and electric discharges ; Plasma diagnostic techniques and instrumentation ; Plasma properties</subject><ispartof>Journal of physics. D, Applied physics, 2006-10, Vol.39 (19), p.4194-4203</ispartof><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-d9b5cf917052be1e36fb8fe0c3f4dcfa91fd1cab90f30252a740b4df421554053</citedby><cites>FETCH-LOGICAL-c450t-d9b5cf917052be1e36fb8fe0c3f4dcfa91fd1cab90f30252a740b4df421554053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0022-3727/39/19/011/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53830,53910</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18163940$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Vries, N d</creatorcontrib><creatorcontrib>Iordanova, E</creatorcontrib><creatorcontrib>Hartgers, A</creatorcontrib><creatorcontrib>Veldhuizen, E M v</creatorcontrib><creatorcontrib>Donker, M J v d</creatorcontrib><creatorcontrib>Mullen, J J A M v d</creatorcontrib><title>A spectroscopic method to determine the electron temperature of an argon surface wave sustained plasmas using a collision radiative model</title><title>Journal of physics. D, Applied physics</title><description>A method is presented to determine the electron temperature in a low pressure argon plasma using emission spectroscopic measurements and a collisional radiative (CR) model. Absolute line intensity measurements are made in order to construct the atomic state distribution function. In addition to the excited states, the ground state density is also taken into account. Because of this, the excitation temperature can be determined with high precision. A CR-model has been used to determine the degree of equilibrium departure and to obtain the relationship between the excitation temperature and the electron temperature. This method is applied to a microwave plasma which has been generated inside a quartz tube using a surfatron device. The densities of argon levels close to the continuum are used to get an estimated value of the electron density. These values are used as input data for the CR-model. For an argon pressure of 6 mbar, the 4p level densities vary between 8 X 1014 and 6 X 1015 m-3. Using the estimated values for the electron density, between 2 X 1019 and 3 X 1019 m-3, the electron temperature was found to range between 1.15 and 1.20 eV. An extensive error analysis showed that the relative error in the electron temperature is less than 6%.</description><subject>Exact sciences and technology</subject><subject>Optical (ultraviolet, visible, infrared) measurements</subject><subject>Physics</subject><subject>Physics of gases, plasmas and electric discharges</subject><subject>Physics of plasmas and electric discharges</subject><subject>Plasma diagnostic techniques and instrumentation</subject><subject>Plasma properties</subject><issn>0022-3727</issn><issn>1361-6463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kE1rFTEUhoNY8Fr7C9xko4vC9OZjvrIsxapQcKPrcCY5aSOZyZhkFH-C_9pcb6mLlq4OOXnel8NDyFvOLjgbxz1jQjRyEMNeqj1Xe8b5C7LjsudN3_byJdk9EK_I65y_M8a6fuQ78ueS5hVNSTGbuHpDZyx30dISqcWCafYL0nKHFMM_aqEF5xUTlC0hjY7CQiHd1n3ekgOD9Bf8xPrIBWrU0jVAniHTLfvllgI1MQSffQ0ksB6Kr_QcLYY35MRByHh2P0_Jt-sPX68-NTdfPn6-urxpTNux0lg1dcYpPrBOTMhR9m4aHTIjXWuNA8Wd5QYmxZxkohMwtGxqrWsF77qWdfKUvD_2rin-2DAXPftsMARYMG5ZC9WLkamhgvIImionJ3R6TX6G9Ftzpg_a9UGqPkjVUmmudNVeU-_u6yEbCC7BYnz-Hx15L1XLKnd-5HxcH36fKNSrdRW-eAw_d8VfIBygkA</recordid><startdate>20061007</startdate><enddate>20061007</enddate><creator>Vries, N d</creator><creator>Iordanova, E</creator><creator>Hartgers, A</creator><creator>Veldhuizen, E M v</creator><creator>Donker, M J v d</creator><creator>Mullen, J J A M v d</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20061007</creationdate><title>A spectroscopic method to determine the electron temperature of an argon surface wave sustained plasmas using a collision radiative model</title><author>Vries, N d ; Iordanova, E ; Hartgers, A ; Veldhuizen, E M v ; Donker, M J v d ; Mullen, J J A M v d</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-d9b5cf917052be1e36fb8fe0c3f4dcfa91fd1cab90f30252a740b4df421554053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Exact sciences and technology</topic><topic>Optical (ultraviolet, visible, infrared) measurements</topic><topic>Physics</topic><topic>Physics of gases, plasmas and electric discharges</topic><topic>Physics of plasmas and electric discharges</topic><topic>Plasma diagnostic techniques and instrumentation</topic><topic>Plasma properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vries, N d</creatorcontrib><creatorcontrib>Iordanova, E</creatorcontrib><creatorcontrib>Hartgers, A</creatorcontrib><creatorcontrib>Veldhuizen, E M v</creatorcontrib><creatorcontrib>Donker, M J v d</creatorcontrib><creatorcontrib>Mullen, J J A M v d</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of physics. D, Applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vries, N d</au><au>Iordanova, E</au><au>Hartgers, A</au><au>Veldhuizen, E M v</au><au>Donker, M J v d</au><au>Mullen, J J A M v d</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A spectroscopic method to determine the electron temperature of an argon surface wave sustained plasmas using a collision radiative model</atitle><jtitle>Journal of physics. D, Applied physics</jtitle><date>2006-10-07</date><risdate>2006</risdate><volume>39</volume><issue>19</issue><spage>4194</spage><epage>4203</epage><pages>4194-4203</pages><issn>0022-3727</issn><eissn>1361-6463</eissn><coden>JPAPBE</coden><abstract>A method is presented to determine the electron temperature in a low pressure argon plasma using emission spectroscopic measurements and a collisional radiative (CR) model. Absolute line intensity measurements are made in order to construct the atomic state distribution function. In addition to the excited states, the ground state density is also taken into account. Because of this, the excitation temperature can be determined with high precision. A CR-model has been used to determine the degree of equilibrium departure and to obtain the relationship between the excitation temperature and the electron temperature. This method is applied to a microwave plasma which has been generated inside a quartz tube using a surfatron device. The densities of argon levels close to the continuum are used to get an estimated value of the electron density. These values are used as input data for the CR-model. For an argon pressure of 6 mbar, the 4p level densities vary between 8 X 1014 and 6 X 1015 m-3. Using the estimated values for the electron density, between 2 X 1019 and 3 X 1019 m-3, the electron temperature was found to range between 1.15 and 1.20 eV. An extensive error analysis showed that the relative error in the electron temperature is less than 6%.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/0022-3727/39/19/011</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3727
ispartof Journal of physics. D, Applied physics, 2006-10, Vol.39 (19), p.4194-4203
issn 0022-3727
1361-6463
language eng
recordid cdi_proquest_miscellaneous_29628097
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Exact sciences and technology
Optical (ultraviolet, visible, infrared) measurements
Physics
Physics of gases, plasmas and electric discharges
Physics of plasmas and electric discharges
Plasma diagnostic techniques and instrumentation
Plasma properties
title A spectroscopic method to determine the electron temperature of an argon surface wave sustained plasmas using a collision radiative model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A51%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20spectroscopic%20method%20to%20determine%20the%20electron%20temperature%20of%20an%20argon%20surface%20wave%20sustained%20plasmas%20using%20a%20collision%20radiative%20model&rft.jtitle=Journal%20of%20physics.%20D,%20Applied%20physics&rft.au=Vries,%20N%20d&rft.date=2006-10-07&rft.volume=39&rft.issue=19&rft.spage=4194&rft.epage=4203&rft.pages=4194-4203&rft.issn=0022-3727&rft.eissn=1361-6463&rft.coden=JPAPBE&rft_id=info:doi/10.1088/0022-3727/39/19/011&rft_dat=%3Cproquest_cross%3E29628097%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29628097&rft_id=info:pmid/&rfr_iscdi=true