ASOM applied to dynamic analysis

The fundamental mode shape and frequency of structural systems are important quantities in all codes of practice for earthquake resistance design. Computation of these quantities is based on the concept of generalized coordinates and/or Rayleigh's method. In these methods the frequency is compu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in numerical methods in engineering 2006-09, Vol.22 (9), p.967-974
1. Verfasser: Ranjbaran, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 974
container_issue 9
container_start_page 967
container_title Communications in numerical methods in engineering
container_volume 22
creator Ranjbaran, A.
description The fundamental mode shape and frequency of structural systems are important quantities in all codes of practice for earthquake resistance design. Computation of these quantities is based on the concept of generalized coordinates and/or Rayleigh's method. In these methods the frequency is computed in terms of a chosen shape so is approximate. The exact result corresponds to the exact shape which is not known in advance. Here the method of analysis of structures by the optimization methods (ASOM) is used to obtain the actual shape and so the exact fundamental frequency and mode shape of structural systems. The maximum frequency and corresponding mode shape is obtained as well. The presented algorithm can be a good complement of codes for analysis of fundamental modes of structures. Copyright © 2006 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/cnm.864
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29626438</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1082190444</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3934-7239fd128b00f5f637fb02df868d31f49eb5946eef0834776219459cb63b55bf3</originalsourceid><addsrcrecordid>eNp90EtLAzEUhuEgCtYq_oXZeAGZmkkyuSxL0Sr0olTpMmQyCUTn5qRF59-bMkVXujpn8fAuPgDOEzhKIES3uipHnJIDMEigEDHknB3ufipijoQ4Bifev0EIBeRwAKLxajmPVNMUzuTRpo7yrlKl05GqVNF550_BkVWFN2f7OwSv93cvk4d4tpw-TsazWGOBScwQFjZPEM8gtKmlmNkMotxyynOcWCJMlgpCjbGQY8IYRYkgqdAZxVmaZhYPwWXfbdr6Y2v8RpbOa1MUqjL11kskKKIE8wCv_4UJ5KENCSGBXvVUt7X3rbGyaV2p2i4guRtLhrFkGCvIi31Uea0K26pKO__LeZgRcRrcTe8-XWG6v3Jyspj31bjXzm_M149W7bukDLNUrhdTydb46XlKZ3KFvwGkh4Mt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082190444</pqid></control><display><type>article</type><title>ASOM applied to dynamic analysis</title><source>Access via Wiley Online Library</source><creator>Ranjbaran, A.</creator><creatorcontrib>Ranjbaran, A.</creatorcontrib><description>The fundamental mode shape and frequency of structural systems are important quantities in all codes of practice for earthquake resistance design. Computation of these quantities is based on the concept of generalized coordinates and/or Rayleigh's method. In these methods the frequency is computed in terms of a chosen shape so is approximate. The exact result corresponds to the exact shape which is not known in advance. Here the method of analysis of structures by the optimization methods (ASOM) is used to obtain the actual shape and so the exact fundamental frequency and mode shape of structural systems. The maximum frequency and corresponding mode shape is obtained as well. The presented algorithm can be a good complement of codes for analysis of fundamental modes of structures. Copyright © 2006 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 1069-8299</identifier><identifier>EISSN: 1099-0887</identifier><identifier>DOI: 10.1002/cnm.864</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Approximation ; ASOM ; Complement ; Computation ; Computational techniques ; dynamic analysis ; Dynamic tests ; Dynamical systems ; Dynamics ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; fundamental frequency ; Mathematical methods in physics ; Mathematical models ; Optimization ; Physics ; Rayleigh quotient ; Solid mechanics ; Structural and continuum mechanics ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><ispartof>Communications in numerical methods in engineering, 2006-09, Vol.22 (9), p.967-974</ispartof><rights>Copyright © 2006 John Wiley &amp; Sons, Ltd.</rights><rights>2006 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3934-7239fd128b00f5f637fb02df868d31f49eb5946eef0834776219459cb63b55bf3</citedby><cites>FETCH-LOGICAL-c3934-7239fd128b00f5f637fb02df868d31f49eb5946eef0834776219459cb63b55bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcnm.864$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcnm.864$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18088286$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ranjbaran, A.</creatorcontrib><title>ASOM applied to dynamic analysis</title><title>Communications in numerical methods in engineering</title><addtitle>Commun. Numer. Meth. Engng</addtitle><description>The fundamental mode shape and frequency of structural systems are important quantities in all codes of practice for earthquake resistance design. Computation of these quantities is based on the concept of generalized coordinates and/or Rayleigh's method. In these methods the frequency is computed in terms of a chosen shape so is approximate. The exact result corresponds to the exact shape which is not known in advance. Here the method of analysis of structures by the optimization methods (ASOM) is used to obtain the actual shape and so the exact fundamental frequency and mode shape of structural systems. The maximum frequency and corresponding mode shape is obtained as well. The presented algorithm can be a good complement of codes for analysis of fundamental modes of structures. Copyright © 2006 John Wiley &amp; Sons, Ltd.</description><subject>Approximation</subject><subject>ASOM</subject><subject>Complement</subject><subject>Computation</subject><subject>Computational techniques</subject><subject>dynamic analysis</subject><subject>Dynamic tests</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>fundamental frequency</subject><subject>Mathematical methods in physics</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Physics</subject><subject>Rayleigh quotient</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><issn>1069-8299</issn><issn>1099-0887</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp90EtLAzEUhuEgCtYq_oXZeAGZmkkyuSxL0Sr0olTpMmQyCUTn5qRF59-bMkVXujpn8fAuPgDOEzhKIES3uipHnJIDMEigEDHknB3ufipijoQ4Bifev0EIBeRwAKLxajmPVNMUzuTRpo7yrlKl05GqVNF550_BkVWFN2f7OwSv93cvk4d4tpw-TsazWGOBScwQFjZPEM8gtKmlmNkMotxyynOcWCJMlgpCjbGQY8IYRYkgqdAZxVmaZhYPwWXfbdr6Y2v8RpbOa1MUqjL11kskKKIE8wCv_4UJ5KENCSGBXvVUt7X3rbGyaV2p2i4guRtLhrFkGCvIi31Uea0K26pKO__LeZgRcRrcTe8-XWG6v3Jyspj31bjXzm_M149W7bukDLNUrhdTydb46XlKZ3KFvwGkh4Mt</recordid><startdate>200609</startdate><enddate>200609</enddate><creator>Ranjbaran, A.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7SM</scope></search><sort><creationdate>200609</creationdate><title>ASOM applied to dynamic analysis</title><author>Ranjbaran, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3934-7239fd128b00f5f637fb02df868d31f49eb5946eef0834776219459cb63b55bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Approximation</topic><topic>ASOM</topic><topic>Complement</topic><topic>Computation</topic><topic>Computational techniques</topic><topic>dynamic analysis</topic><topic>Dynamic tests</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>fundamental frequency</topic><topic>Mathematical methods in physics</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Physics</topic><topic>Rayleigh quotient</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><toplevel>online_resources</toplevel><creatorcontrib>Ranjbaran, A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Earthquake Engineering Abstracts</collection><jtitle>Communications in numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ranjbaran, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ASOM applied to dynamic analysis</atitle><jtitle>Communications in numerical methods in engineering</jtitle><addtitle>Commun. Numer. Meth. Engng</addtitle><date>2006-09</date><risdate>2006</risdate><volume>22</volume><issue>9</issue><spage>967</spage><epage>974</epage><pages>967-974</pages><issn>1069-8299</issn><eissn>1099-0887</eissn><abstract>The fundamental mode shape and frequency of structural systems are important quantities in all codes of practice for earthquake resistance design. Computation of these quantities is based on the concept of generalized coordinates and/or Rayleigh's method. In these methods the frequency is computed in terms of a chosen shape so is approximate. The exact result corresponds to the exact shape which is not known in advance. Here the method of analysis of structures by the optimization methods (ASOM) is used to obtain the actual shape and so the exact fundamental frequency and mode shape of structural systems. The maximum frequency and corresponding mode shape is obtained as well. The presented algorithm can be a good complement of codes for analysis of fundamental modes of structures. Copyright © 2006 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/cnm.864</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1069-8299
ispartof Communications in numerical methods in engineering, 2006-09, Vol.22 (9), p.967-974
issn 1069-8299
1099-0887
language eng
recordid cdi_proquest_miscellaneous_29626438
source Access via Wiley Online Library
subjects Approximation
ASOM
Complement
Computation
Computational techniques
dynamic analysis
Dynamic tests
Dynamical systems
Dynamics
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
fundamental frequency
Mathematical methods in physics
Mathematical models
Optimization
Physics
Rayleigh quotient
Solid mechanics
Structural and continuum mechanics
Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)
title ASOM applied to dynamic analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A24%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ASOM%20applied%20to%20dynamic%20analysis&rft.jtitle=Communications%20in%20numerical%20methods%20in%20engineering&rft.au=Ranjbaran,%20A.&rft.date=2006-09&rft.volume=22&rft.issue=9&rft.spage=967&rft.epage=974&rft.pages=967-974&rft.issn=1069-8299&rft.eissn=1099-0887&rft_id=info:doi/10.1002/cnm.864&rft_dat=%3Cproquest_cross%3E1082190444%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082190444&rft_id=info:pmid/&rfr_iscdi=true