ASOM applied to dynamic analysis
The fundamental mode shape and frequency of structural systems are important quantities in all codes of practice for earthquake resistance design. Computation of these quantities is based on the concept of generalized coordinates and/or Rayleigh's method. In these methods the frequency is compu...
Gespeichert in:
Veröffentlicht in: | Communications in numerical methods in engineering 2006-09, Vol.22 (9), p.967-974 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 974 |
---|---|
container_issue | 9 |
container_start_page | 967 |
container_title | Communications in numerical methods in engineering |
container_volume | 22 |
creator | Ranjbaran, A. |
description | The fundamental mode shape and frequency of structural systems are important quantities in all codes of practice for earthquake resistance design. Computation of these quantities is based on the concept of generalized coordinates and/or Rayleigh's method. In these methods the frequency is computed in terms of a chosen shape so is approximate. The exact result corresponds to the exact shape which is not known in advance. Here the method of analysis of structures by the optimization methods (ASOM) is used to obtain the actual shape and so the exact fundamental frequency and mode shape of structural systems. The maximum frequency and corresponding mode shape is obtained as well. The presented algorithm can be a good complement of codes for analysis of fundamental modes of structures. Copyright © 2006 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/cnm.864 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29626438</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1082190444</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3934-7239fd128b00f5f637fb02df868d31f49eb5946eef0834776219459cb63b55bf3</originalsourceid><addsrcrecordid>eNp90EtLAzEUhuEgCtYq_oXZeAGZmkkyuSxL0Sr0olTpMmQyCUTn5qRF59-bMkVXujpn8fAuPgDOEzhKIES3uipHnJIDMEigEDHknB3ufipijoQ4Bifev0EIBeRwAKLxajmPVNMUzuTRpo7yrlKl05GqVNF550_BkVWFN2f7OwSv93cvk4d4tpw-TsazWGOBScwQFjZPEM8gtKmlmNkMotxyynOcWCJMlgpCjbGQY8IYRYkgqdAZxVmaZhYPwWXfbdr6Y2v8RpbOa1MUqjL11kskKKIE8wCv_4UJ5KENCSGBXvVUt7X3rbGyaV2p2i4guRtLhrFkGCvIi31Uea0K26pKO__LeZgRcRrcTe8-XWG6v3Jyspj31bjXzm_M149W7bukDLNUrhdTydb46XlKZ3KFvwGkh4Mt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082190444</pqid></control><display><type>article</type><title>ASOM applied to dynamic analysis</title><source>Access via Wiley Online Library</source><creator>Ranjbaran, A.</creator><creatorcontrib>Ranjbaran, A.</creatorcontrib><description>The fundamental mode shape and frequency of structural systems are important quantities in all codes of practice for earthquake resistance design. Computation of these quantities is based on the concept of generalized coordinates and/or Rayleigh's method. In these methods the frequency is computed in terms of a chosen shape so is approximate. The exact result corresponds to the exact shape which is not known in advance. Here the method of analysis of structures by the optimization methods (ASOM) is used to obtain the actual shape and so the exact fundamental frequency and mode shape of structural systems. The maximum frequency and corresponding mode shape is obtained as well. The presented algorithm can be a good complement of codes for analysis of fundamental modes of structures. Copyright © 2006 John Wiley & Sons, Ltd.</description><identifier>ISSN: 1069-8299</identifier><identifier>EISSN: 1099-0887</identifier><identifier>DOI: 10.1002/cnm.864</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Approximation ; ASOM ; Complement ; Computation ; Computational techniques ; dynamic analysis ; Dynamic tests ; Dynamical systems ; Dynamics ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; fundamental frequency ; Mathematical methods in physics ; Mathematical models ; Optimization ; Physics ; Rayleigh quotient ; Solid mechanics ; Structural and continuum mechanics ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><ispartof>Communications in numerical methods in engineering, 2006-09, Vol.22 (9), p.967-974</ispartof><rights>Copyright © 2006 John Wiley & Sons, Ltd.</rights><rights>2006 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3934-7239fd128b00f5f637fb02df868d31f49eb5946eef0834776219459cb63b55bf3</citedby><cites>FETCH-LOGICAL-c3934-7239fd128b00f5f637fb02df868d31f49eb5946eef0834776219459cb63b55bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcnm.864$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcnm.864$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18088286$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ranjbaran, A.</creatorcontrib><title>ASOM applied to dynamic analysis</title><title>Communications in numerical methods in engineering</title><addtitle>Commun. Numer. Meth. Engng</addtitle><description>The fundamental mode shape and frequency of structural systems are important quantities in all codes of practice for earthquake resistance design. Computation of these quantities is based on the concept of generalized coordinates and/or Rayleigh's method. In these methods the frequency is computed in terms of a chosen shape so is approximate. The exact result corresponds to the exact shape which is not known in advance. Here the method of analysis of structures by the optimization methods (ASOM) is used to obtain the actual shape and so the exact fundamental frequency and mode shape of structural systems. The maximum frequency and corresponding mode shape is obtained as well. The presented algorithm can be a good complement of codes for analysis of fundamental modes of structures. Copyright © 2006 John Wiley & Sons, Ltd.</description><subject>Approximation</subject><subject>ASOM</subject><subject>Complement</subject><subject>Computation</subject><subject>Computational techniques</subject><subject>dynamic analysis</subject><subject>Dynamic tests</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>fundamental frequency</subject><subject>Mathematical methods in physics</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Physics</subject><subject>Rayleigh quotient</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><issn>1069-8299</issn><issn>1099-0887</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp90EtLAzEUhuEgCtYq_oXZeAGZmkkyuSxL0Sr0olTpMmQyCUTn5qRF59-bMkVXujpn8fAuPgDOEzhKIES3uipHnJIDMEigEDHknB3ufipijoQ4Bifev0EIBeRwAKLxajmPVNMUzuTRpo7yrlKl05GqVNF550_BkVWFN2f7OwSv93cvk4d4tpw-TsazWGOBScwQFjZPEM8gtKmlmNkMotxyynOcWCJMlgpCjbGQY8IYRYkgqdAZxVmaZhYPwWXfbdr6Y2v8RpbOa1MUqjL11kskKKIE8wCv_4UJ5KENCSGBXvVUt7X3rbGyaV2p2i4guRtLhrFkGCvIi31Uea0K26pKO__LeZgRcRrcTe8-XWG6v3Jyspj31bjXzm_M149W7bukDLNUrhdTydb46XlKZ3KFvwGkh4Mt</recordid><startdate>200609</startdate><enddate>200609</enddate><creator>Ranjbaran, A.</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7SM</scope></search><sort><creationdate>200609</creationdate><title>ASOM applied to dynamic analysis</title><author>Ranjbaran, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3934-7239fd128b00f5f637fb02df868d31f49eb5946eef0834776219459cb63b55bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Approximation</topic><topic>ASOM</topic><topic>Complement</topic><topic>Computation</topic><topic>Computational techniques</topic><topic>dynamic analysis</topic><topic>Dynamic tests</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>fundamental frequency</topic><topic>Mathematical methods in physics</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Physics</topic><topic>Rayleigh quotient</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><toplevel>online_resources</toplevel><creatorcontrib>Ranjbaran, A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Earthquake Engineering Abstracts</collection><jtitle>Communications in numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ranjbaran, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ASOM applied to dynamic analysis</atitle><jtitle>Communications in numerical methods in engineering</jtitle><addtitle>Commun. Numer. Meth. Engng</addtitle><date>2006-09</date><risdate>2006</risdate><volume>22</volume><issue>9</issue><spage>967</spage><epage>974</epage><pages>967-974</pages><issn>1069-8299</issn><eissn>1099-0887</eissn><abstract>The fundamental mode shape and frequency of structural systems are important quantities in all codes of practice for earthquake resistance design. Computation of these quantities is based on the concept of generalized coordinates and/or Rayleigh's method. In these methods the frequency is computed in terms of a chosen shape so is approximate. The exact result corresponds to the exact shape which is not known in advance. Here the method of analysis of structures by the optimization methods (ASOM) is used to obtain the actual shape and so the exact fundamental frequency and mode shape of structural systems. The maximum frequency and corresponding mode shape is obtained as well. The presented algorithm can be a good complement of codes for analysis of fundamental modes of structures. Copyright © 2006 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/cnm.864</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1069-8299 |
ispartof | Communications in numerical methods in engineering, 2006-09, Vol.22 (9), p.967-974 |
issn | 1069-8299 1099-0887 |
language | eng |
recordid | cdi_proquest_miscellaneous_29626438 |
source | Access via Wiley Online Library |
subjects | Approximation ASOM Complement Computation Computational techniques dynamic analysis Dynamic tests Dynamical systems Dynamics Exact sciences and technology Fundamental areas of phenomenology (including applications) fundamental frequency Mathematical methods in physics Mathematical models Optimization Physics Rayleigh quotient Solid mechanics Structural and continuum mechanics Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) |
title | ASOM applied to dynamic analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A24%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ASOM%20applied%20to%20dynamic%20analysis&rft.jtitle=Communications%20in%20numerical%20methods%20in%20engineering&rft.au=Ranjbaran,%20A.&rft.date=2006-09&rft.volume=22&rft.issue=9&rft.spage=967&rft.epage=974&rft.pages=967-974&rft.issn=1069-8299&rft.eissn=1099-0887&rft_id=info:doi/10.1002/cnm.864&rft_dat=%3Cproquest_cross%3E1082190444%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082190444&rft_id=info:pmid/&rfr_iscdi=true |