A surface Cauchy-Born model for nanoscale materials

We present an energy‐based continuum model for the analysis of nanoscale materials where surface effects are expected to contribute significantly to the mechanical response. The approach adopts principles utilized in Cauchy–Born constitutive modelling in that the strain energy density of the continu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering 2006-12, Vol.68 (10), p.1072-1095
Hauptverfasser: Park, Harold S., Klein, Patrick A., Wagner, Gregory J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1095
container_issue 10
container_start_page 1072
container_title International journal for numerical methods in engineering
container_volume 68
creator Park, Harold S.
Klein, Patrick A.
Wagner, Gregory J.
description We present an energy‐based continuum model for the analysis of nanoscale materials where surface effects are expected to contribute significantly to the mechanical response. The approach adopts principles utilized in Cauchy–Born constitutive modelling in that the strain energy density of the continuum is derived from an underlying crystal structure and interatomic potential. The key to the success of the proposed method lies in decomposing the potential energy of the material into bulk (volumetric) and surface area components. In doing so, the method naturally satisfies a variational formulation in which the bulk volume and surface area contribute independently to the overall system energy. Because the surface area to volume ratio increases as the length scale of a body decreases, the variational form naturally allows the surface energy to become important at small length scales; this feature allows the accurate representation of size and surface effects on the mechanical response. Finite element simulations utilizing the proposed approach are compared against fully atomistic simulations for verification and validation. Copyright © 2006 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/nme.1754
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29621359</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29621359</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4314-4909a5b6c6c545695a28384d75477921d988717a9bbcbf023e4ef476e048539d3</originalsourceid><addsrcrecordid>eNp90DtPwzAUBWALgUQpSPyELCAWFz9jeyylFNRSFhCj5TiOCORR7EbQf4-rRnSC6Qz309HVAeAcoxFGiFw3tRthwdkBGGCkBEQEiUMwiCcFuZL4GJyE8I4QxhzRAaDjJHS-MNYlE9PZtw28aX2T1G3uqqRofdKYpg3WVC6pzdr50lThFBwVMdxZn0Pwcjd9ntzDxdPsYTJeQMsoZpAppAzPUptazniquCGSSpbH54RQBOdKSoGFUVlmswIR6pgrmEgdYpJTldMhuNz1rnz72bmw1nUZrKsq07i2C5qolGDKVYRX_0KMJMFSMCT31Po2BO8KvfJlbfwmIr0dUMcB9XbASC_6VrMdoPCmsWXYe0mk4EpEB3fuq6zc5s8-vXyc9r29L8Paff964z90Kqjg-nU507dzgVIsmZ7TH8CcihI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082187408</pqid></control><display><type>article</type><title>A surface Cauchy-Born model for nanoscale materials</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Park, Harold S. ; Klein, Patrick A. ; Wagner, Gregory J.</creator><creatorcontrib>Park, Harold S. ; Klein, Patrick A. ; Wagner, Gregory J.</creatorcontrib><description>We present an energy‐based continuum model for the analysis of nanoscale materials where surface effects are expected to contribute significantly to the mechanical response. The approach adopts principles utilized in Cauchy–Born constitutive modelling in that the strain energy density of the continuum is derived from an underlying crystal structure and interatomic potential. The key to the success of the proposed method lies in decomposing the potential energy of the material into bulk (volumetric) and surface area components. In doing so, the method naturally satisfies a variational formulation in which the bulk volume and surface area contribute independently to the overall system energy. Because the surface area to volume ratio increases as the length scale of a body decreases, the variational form naturally allows the surface energy to become important at small length scales; this feature allows the accurate representation of size and surface effects on the mechanical response. Finite element simulations utilizing the proposed approach are compared against fully atomistic simulations for verification and validation. Copyright © 2006 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.1754</identifier><identifier>CODEN: IJNMBH</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Cauchy-Born ; Continuums ; Cross-disciplinary physics: materials science; rheology ; Energy density ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Materials science ; Mathematical models ; Nanocomposites ; Nanomaterials ; nanoscale materials ; Nanoscale materials and structures: fabrication and characterization ; Nanostructure ; Physics ; Simulation ; Solid mechanics ; Static elasticity (thermoelasticity...) ; Structural and continuum mechanics ; Surface area ; surface elasticity ; surface stress</subject><ispartof>International journal for numerical methods in engineering, 2006-12, Vol.68 (10), p.1072-1095</ispartof><rights>Copyright © 2006 John Wiley &amp; Sons, Ltd.</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4314-4909a5b6c6c545695a28384d75477921d988717a9bbcbf023e4ef476e048539d3</citedby><cites>FETCH-LOGICAL-c4314-4909a5b6c6c545695a28384d75477921d988717a9bbcbf023e4ef476e048539d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.1754$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.1754$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18287597$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Harold S.</creatorcontrib><creatorcontrib>Klein, Patrick A.</creatorcontrib><creatorcontrib>Wagner, Gregory J.</creatorcontrib><title>A surface Cauchy-Born model for nanoscale materials</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>We present an energy‐based continuum model for the analysis of nanoscale materials where surface effects are expected to contribute significantly to the mechanical response. The approach adopts principles utilized in Cauchy–Born constitutive modelling in that the strain energy density of the continuum is derived from an underlying crystal structure and interatomic potential. The key to the success of the proposed method lies in decomposing the potential energy of the material into bulk (volumetric) and surface area components. In doing so, the method naturally satisfies a variational formulation in which the bulk volume and surface area contribute independently to the overall system energy. Because the surface area to volume ratio increases as the length scale of a body decreases, the variational form naturally allows the surface energy to become important at small length scales; this feature allows the accurate representation of size and surface effects on the mechanical response. Finite element simulations utilizing the proposed approach are compared against fully atomistic simulations for verification and validation. Copyright © 2006 John Wiley &amp; Sons, Ltd.</description><subject>Cauchy-Born</subject><subject>Continuums</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Energy density</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Materials science</subject><subject>Mathematical models</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>nanoscale materials</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanostructure</subject><subject>Physics</subject><subject>Simulation</subject><subject>Solid mechanics</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Structural and continuum mechanics</subject><subject>Surface area</subject><subject>surface elasticity</subject><subject>surface stress</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp90DtPwzAUBWALgUQpSPyELCAWFz9jeyylFNRSFhCj5TiOCORR7EbQf4-rRnSC6Qz309HVAeAcoxFGiFw3tRthwdkBGGCkBEQEiUMwiCcFuZL4GJyE8I4QxhzRAaDjJHS-MNYlE9PZtw28aX2T1G3uqqRofdKYpg3WVC6pzdr50lThFBwVMdxZn0Pwcjd9ntzDxdPsYTJeQMsoZpAppAzPUptazniquCGSSpbH54RQBOdKSoGFUVlmswIR6pgrmEgdYpJTldMhuNz1rnz72bmw1nUZrKsq07i2C5qolGDKVYRX_0KMJMFSMCT31Po2BO8KvfJlbfwmIr0dUMcB9XbASC_6VrMdoPCmsWXYe0mk4EpEB3fuq6zc5s8-vXyc9r29L8Paff964z90Kqjg-nU507dzgVIsmZ7TH8CcihI</recordid><startdate>20061203</startdate><enddate>20061203</enddate><creator>Park, Harold S.</creator><creator>Klein, Patrick A.</creator><creator>Wagner, Gregory J.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20061203</creationdate><title>A surface Cauchy-Born model for nanoscale materials</title><author>Park, Harold S. ; Klein, Patrick A. ; Wagner, Gregory J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4314-4909a5b6c6c545695a28384d75477921d988717a9bbcbf023e4ef476e048539d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Cauchy-Born</topic><topic>Continuums</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Energy density</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Materials science</topic><topic>Mathematical models</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>nanoscale materials</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanostructure</topic><topic>Physics</topic><topic>Simulation</topic><topic>Solid mechanics</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Structural and continuum mechanics</topic><topic>Surface area</topic><topic>surface elasticity</topic><topic>surface stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Harold S.</creatorcontrib><creatorcontrib>Klein, Patrick A.</creatorcontrib><creatorcontrib>Wagner, Gregory J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Harold S.</au><au>Klein, Patrick A.</au><au>Wagner, Gregory J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A surface Cauchy-Born model for nanoscale materials</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>2006-12-03</date><risdate>2006</risdate><volume>68</volume><issue>10</issue><spage>1072</spage><epage>1095</epage><pages>1072-1095</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><coden>IJNMBH</coden><abstract>We present an energy‐based continuum model for the analysis of nanoscale materials where surface effects are expected to contribute significantly to the mechanical response. The approach adopts principles utilized in Cauchy–Born constitutive modelling in that the strain energy density of the continuum is derived from an underlying crystal structure and interatomic potential. The key to the success of the proposed method lies in decomposing the potential energy of the material into bulk (volumetric) and surface area components. In doing so, the method naturally satisfies a variational formulation in which the bulk volume and surface area contribute independently to the overall system energy. Because the surface area to volume ratio increases as the length scale of a body decreases, the variational form naturally allows the surface energy to become important at small length scales; this feature allows the accurate representation of size and surface effects on the mechanical response. Finite element simulations utilizing the proposed approach are compared against fully atomistic simulations for verification and validation. Copyright © 2006 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/nme.1754</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 2006-12, Vol.68 (10), p.1072-1095
issn 0029-5981
1097-0207
language eng
recordid cdi_proquest_miscellaneous_29621359
source Wiley Online Library Journals Frontfile Complete
subjects Cauchy-Born
Continuums
Cross-disciplinary physics: materials science
rheology
Energy density
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Materials science
Mathematical models
Nanocomposites
Nanomaterials
nanoscale materials
Nanoscale materials and structures: fabrication and characterization
Nanostructure
Physics
Simulation
Solid mechanics
Static elasticity (thermoelasticity...)
Structural and continuum mechanics
Surface area
surface elasticity
surface stress
title A surface Cauchy-Born model for nanoscale materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T15%3A36%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20surface%20Cauchy-Born%20model%20for%20nanoscale%20materials&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Park,%20Harold%20S.&rft.date=2006-12-03&rft.volume=68&rft.issue=10&rft.spage=1072&rft.epage=1095&rft.pages=1072-1095&rft.issn=0029-5981&rft.eissn=1097-0207&rft.coden=IJNMBH&rft_id=info:doi/10.1002/nme.1754&rft_dat=%3Cproquest_cross%3E29621359%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082187408&rft_id=info:pmid/&rfr_iscdi=true