A superlinearly convergent Mach-uniform finite volume method for the Euler equations on staggered unstructured grids
A Mach-uniform finite volume scheme for solving the unsteady Euler equations on staggered unstructured triangular grids that uses linear reconstruction is described. The scheme is applied to three benchmark problems and is found to be considerably more accurate than a similar scheme based on piecewi...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2006-09, Vol.217 (2), p.277-294 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 294 |
---|---|
container_issue | 2 |
container_start_page | 277 |
container_title | Journal of computational physics |
container_volume | 217 |
creator | Vidović, D. Segal, A. Wesseling, P. |
description | A Mach-uniform finite volume scheme for solving the unsteady Euler equations on staggered unstructured triangular grids that uses linear reconstruction is described. The scheme is applied to three benchmark problems and is found to be considerably more accurate than a similar scheme based on piecewise constant reconstruction. |
doi_str_mv | 10.1016/j.jcp.2006.01.031 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29615006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999106000301</els_id><sourcerecordid>1082185448</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-fa6e42e067955cffd6e7516d1f733ab0e8a1bbd3b53e31bc678e723c64b97d993</originalsourceid><addsrcrecordid>eNp9kU9r3DAQxU1poNukH6A3XVp6saOxbMmmpxCSNJDSS3sWsjza1WJLG_1ZyLePlg30ltMwzO-9gfeq6ivQBijw632z14empZQ3FBrK4EO1ATrSuhXAP1YbSluox3GET9XnGPeU0qHvhk2VbkjMBwyLdajC8kK0d0cMW3SJ_FZ6V2dnjQ8rMdbZhOTol7wiWTHt_EzKhaQdkru8YCD4nFWy3kXiHYlJbbcYcCbZxRSyTvm0bIOd41V1YdQS8cvbvKz-3d_9vf1VP_15eLy9eap114tUG8Wxa5FyMfa9NmbmKHrgMxjBmJooDgqmaWZTz5DBpLkYULRM824axTyO7LL6fvY9BP-cMSa52qhxWZRDn6NsRw59iayAP94FgQ4tlMC6oaBwRnXwMQY08hDsqsJLgeSpCrmXpQp5qkJSkKWKovn2Zq-iVosJymkb_wsHELylrHA_zxyWUI4Wg4zaotM424A6ydnbd768Au3koLM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082185448</pqid></control><display><type>article</type><title>A superlinearly convergent Mach-uniform finite volume method for the Euler equations on staggered unstructured grids</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Vidović, D. ; Segal, A. ; Wesseling, P.</creator><creatorcontrib>Vidović, D. ; Segal, A. ; Wesseling, P.</creatorcontrib><description>A Mach-uniform finite volume scheme for solving the unsteady Euler equations on staggered unstructured triangular grids that uses linear reconstruction is described. The scheme is applied to three benchmark problems and is found to be considerably more accurate than a similar scheme based on piecewise constant reconstruction.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2006.01.031</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Benchmarking ; Compressible flow ; Computation ; Computational techniques ; Euler equations ; Exact sciences and technology ; Finite volume method ; Mach-uniform ; Mathematical analysis ; Mathematical methods in physics ; Physics ; Reconstruction ; Ringleb ; Staggered unstructured grid ; Unsteady</subject><ispartof>Journal of computational physics, 2006-09, Vol.217 (2), p.277-294</ispartof><rights>2006 Elsevier Inc.</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-fa6e42e067955cffd6e7516d1f733ab0e8a1bbd3b53e31bc678e723c64b97d993</citedby><cites>FETCH-LOGICAL-c457t-fa6e42e067955cffd6e7516d1f733ab0e8a1bbd3b53e31bc678e723c64b97d993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2006.01.031$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18176203$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Vidović, D.</creatorcontrib><creatorcontrib>Segal, A.</creatorcontrib><creatorcontrib>Wesseling, P.</creatorcontrib><title>A superlinearly convergent Mach-uniform finite volume method for the Euler equations on staggered unstructured grids</title><title>Journal of computational physics</title><description>A Mach-uniform finite volume scheme for solving the unsteady Euler equations on staggered unstructured triangular grids that uses linear reconstruction is described. The scheme is applied to three benchmark problems and is found to be considerably more accurate than a similar scheme based on piecewise constant reconstruction.</description><subject>Benchmarking</subject><subject>Compressible flow</subject><subject>Computation</subject><subject>Computational techniques</subject><subject>Euler equations</subject><subject>Exact sciences and technology</subject><subject>Finite volume method</subject><subject>Mach-uniform</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Physics</subject><subject>Reconstruction</subject><subject>Ringleb</subject><subject>Staggered unstructured grid</subject><subject>Unsteady</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kU9r3DAQxU1poNukH6A3XVp6saOxbMmmpxCSNJDSS3sWsjza1WJLG_1ZyLePlg30ltMwzO-9gfeq6ivQBijw632z14empZQ3FBrK4EO1ATrSuhXAP1YbSluox3GET9XnGPeU0qHvhk2VbkjMBwyLdajC8kK0d0cMW3SJ_FZ6V2dnjQ8rMdbZhOTol7wiWTHt_EzKhaQdkru8YCD4nFWy3kXiHYlJbbcYcCbZxRSyTvm0bIOd41V1YdQS8cvbvKz-3d_9vf1VP_15eLy9eap114tUG8Wxa5FyMfa9NmbmKHrgMxjBmJooDgqmaWZTz5DBpLkYULRM824axTyO7LL6fvY9BP-cMSa52qhxWZRDn6NsRw59iayAP94FgQ4tlMC6oaBwRnXwMQY08hDsqsJLgeSpCrmXpQp5qkJSkKWKovn2Zq-iVosJymkb_wsHELylrHA_zxyWUI4Wg4zaotM424A6ydnbd768Au3koLM</recordid><startdate>20060901</startdate><enddate>20060901</enddate><creator>Vidović, D.</creator><creator>Segal, A.</creator><creator>Wesseling, P.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20060901</creationdate><title>A superlinearly convergent Mach-uniform finite volume method for the Euler equations on staggered unstructured grids</title><author>Vidović, D. ; Segal, A. ; Wesseling, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-fa6e42e067955cffd6e7516d1f733ab0e8a1bbd3b53e31bc678e723c64b97d993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Benchmarking</topic><topic>Compressible flow</topic><topic>Computation</topic><topic>Computational techniques</topic><topic>Euler equations</topic><topic>Exact sciences and technology</topic><topic>Finite volume method</topic><topic>Mach-uniform</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Physics</topic><topic>Reconstruction</topic><topic>Ringleb</topic><topic>Staggered unstructured grid</topic><topic>Unsteady</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vidović, D.</creatorcontrib><creatorcontrib>Segal, A.</creatorcontrib><creatorcontrib>Wesseling, P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vidović, D.</au><au>Segal, A.</au><au>Wesseling, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A superlinearly convergent Mach-uniform finite volume method for the Euler equations on staggered unstructured grids</atitle><jtitle>Journal of computational physics</jtitle><date>2006-09-01</date><risdate>2006</risdate><volume>217</volume><issue>2</issue><spage>277</spage><epage>294</epage><pages>277-294</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>A Mach-uniform finite volume scheme for solving the unsteady Euler equations on staggered unstructured triangular grids that uses linear reconstruction is described. The scheme is applied to three benchmark problems and is found to be considerably more accurate than a similar scheme based on piecewise constant reconstruction.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2006.01.031</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2006-09, Vol.217 (2), p.277-294 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_proquest_miscellaneous_29615006 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Benchmarking Compressible flow Computation Computational techniques Euler equations Exact sciences and technology Finite volume method Mach-uniform Mathematical analysis Mathematical methods in physics Physics Reconstruction Ringleb Staggered unstructured grid Unsteady |
title | A superlinearly convergent Mach-uniform finite volume method for the Euler equations on staggered unstructured grids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A45%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20superlinearly%20convergent%20Mach-uniform%20finite%20volume%20method%20for%20the%20Euler%20equations%20on%20staggered%20unstructured%20grids&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Vidovi%C4%87,%20D.&rft.date=2006-09-01&rft.volume=217&rft.issue=2&rft.spage=277&rft.epage=294&rft.pages=277-294&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2006.01.031&rft_dat=%3Cproquest_cross%3E1082185448%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082185448&rft_id=info:pmid/&rft_els_id=S0021999106000301&rfr_iscdi=true |