A superlinearly convergent Mach-uniform finite volume method for the Euler equations on staggered unstructured grids

A Mach-uniform finite volume scheme for solving the unsteady Euler equations on staggered unstructured triangular grids that uses linear reconstruction is described. The scheme is applied to three benchmark problems and is found to be considerably more accurate than a similar scheme based on piecewi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2006-09, Vol.217 (2), p.277-294
Hauptverfasser: Vidović, D., Segal, A., Wesseling, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 294
container_issue 2
container_start_page 277
container_title Journal of computational physics
container_volume 217
creator Vidović, D.
Segal, A.
Wesseling, P.
description A Mach-uniform finite volume scheme for solving the unsteady Euler equations on staggered unstructured triangular grids that uses linear reconstruction is described. The scheme is applied to three benchmark problems and is found to be considerably more accurate than a similar scheme based on piecewise constant reconstruction.
doi_str_mv 10.1016/j.jcp.2006.01.031
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29615006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999106000301</els_id><sourcerecordid>1082185448</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-fa6e42e067955cffd6e7516d1f733ab0e8a1bbd3b53e31bc678e723c64b97d993</originalsourceid><addsrcrecordid>eNp9kU9r3DAQxU1poNukH6A3XVp6saOxbMmmpxCSNJDSS3sWsjza1WJLG_1ZyLePlg30ltMwzO-9gfeq6ivQBijw632z14empZQ3FBrK4EO1ATrSuhXAP1YbSluox3GET9XnGPeU0qHvhk2VbkjMBwyLdajC8kK0d0cMW3SJ_FZ6V2dnjQ8rMdbZhOTol7wiWTHt_EzKhaQdkru8YCD4nFWy3kXiHYlJbbcYcCbZxRSyTvm0bIOd41V1YdQS8cvbvKz-3d_9vf1VP_15eLy9eap114tUG8Wxa5FyMfa9NmbmKHrgMxjBmJooDgqmaWZTz5DBpLkYULRM824axTyO7LL6fvY9BP-cMSa52qhxWZRDn6NsRw59iayAP94FgQ4tlMC6oaBwRnXwMQY08hDsqsJLgeSpCrmXpQp5qkJSkKWKovn2Zq-iVosJymkb_wsHELylrHA_zxyWUI4Wg4zaotM424A6ydnbd768Au3koLM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082185448</pqid></control><display><type>article</type><title>A superlinearly convergent Mach-uniform finite volume method for the Euler equations on staggered unstructured grids</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Vidović, D. ; Segal, A. ; Wesseling, P.</creator><creatorcontrib>Vidović, D. ; Segal, A. ; Wesseling, P.</creatorcontrib><description>A Mach-uniform finite volume scheme for solving the unsteady Euler equations on staggered unstructured triangular grids that uses linear reconstruction is described. The scheme is applied to three benchmark problems and is found to be considerably more accurate than a similar scheme based on piecewise constant reconstruction.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2006.01.031</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Benchmarking ; Compressible flow ; Computation ; Computational techniques ; Euler equations ; Exact sciences and technology ; Finite volume method ; Mach-uniform ; Mathematical analysis ; Mathematical methods in physics ; Physics ; Reconstruction ; Ringleb ; Staggered unstructured grid ; Unsteady</subject><ispartof>Journal of computational physics, 2006-09, Vol.217 (2), p.277-294</ispartof><rights>2006 Elsevier Inc.</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-fa6e42e067955cffd6e7516d1f733ab0e8a1bbd3b53e31bc678e723c64b97d993</citedby><cites>FETCH-LOGICAL-c457t-fa6e42e067955cffd6e7516d1f733ab0e8a1bbd3b53e31bc678e723c64b97d993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2006.01.031$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18176203$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Vidović, D.</creatorcontrib><creatorcontrib>Segal, A.</creatorcontrib><creatorcontrib>Wesseling, P.</creatorcontrib><title>A superlinearly convergent Mach-uniform finite volume method for the Euler equations on staggered unstructured grids</title><title>Journal of computational physics</title><description>A Mach-uniform finite volume scheme for solving the unsteady Euler equations on staggered unstructured triangular grids that uses linear reconstruction is described. The scheme is applied to three benchmark problems and is found to be considerably more accurate than a similar scheme based on piecewise constant reconstruction.</description><subject>Benchmarking</subject><subject>Compressible flow</subject><subject>Computation</subject><subject>Computational techniques</subject><subject>Euler equations</subject><subject>Exact sciences and technology</subject><subject>Finite volume method</subject><subject>Mach-uniform</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Physics</subject><subject>Reconstruction</subject><subject>Ringleb</subject><subject>Staggered unstructured grid</subject><subject>Unsteady</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kU9r3DAQxU1poNukH6A3XVp6saOxbMmmpxCSNJDSS3sWsjza1WJLG_1ZyLePlg30ltMwzO-9gfeq6ivQBijw632z14empZQ3FBrK4EO1ATrSuhXAP1YbSluox3GET9XnGPeU0qHvhk2VbkjMBwyLdajC8kK0d0cMW3SJ_FZ6V2dnjQ8rMdbZhOTol7wiWTHt_EzKhaQdkru8YCD4nFWy3kXiHYlJbbcYcCbZxRSyTvm0bIOd41V1YdQS8cvbvKz-3d_9vf1VP_15eLy9eap114tUG8Wxa5FyMfa9NmbmKHrgMxjBmJooDgqmaWZTz5DBpLkYULRM824axTyO7LL6fvY9BP-cMSa52qhxWZRDn6NsRw59iayAP94FgQ4tlMC6oaBwRnXwMQY08hDsqsJLgeSpCrmXpQp5qkJSkKWKovn2Zq-iVosJymkb_wsHELylrHA_zxyWUI4Wg4zaotM424A6ydnbd768Au3koLM</recordid><startdate>20060901</startdate><enddate>20060901</enddate><creator>Vidović, D.</creator><creator>Segal, A.</creator><creator>Wesseling, P.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20060901</creationdate><title>A superlinearly convergent Mach-uniform finite volume method for the Euler equations on staggered unstructured grids</title><author>Vidović, D. ; Segal, A. ; Wesseling, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-fa6e42e067955cffd6e7516d1f733ab0e8a1bbd3b53e31bc678e723c64b97d993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Benchmarking</topic><topic>Compressible flow</topic><topic>Computation</topic><topic>Computational techniques</topic><topic>Euler equations</topic><topic>Exact sciences and technology</topic><topic>Finite volume method</topic><topic>Mach-uniform</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Physics</topic><topic>Reconstruction</topic><topic>Ringleb</topic><topic>Staggered unstructured grid</topic><topic>Unsteady</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vidović, D.</creatorcontrib><creatorcontrib>Segal, A.</creatorcontrib><creatorcontrib>Wesseling, P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vidović, D.</au><au>Segal, A.</au><au>Wesseling, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A superlinearly convergent Mach-uniform finite volume method for the Euler equations on staggered unstructured grids</atitle><jtitle>Journal of computational physics</jtitle><date>2006-09-01</date><risdate>2006</risdate><volume>217</volume><issue>2</issue><spage>277</spage><epage>294</epage><pages>277-294</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>A Mach-uniform finite volume scheme for solving the unsteady Euler equations on staggered unstructured triangular grids that uses linear reconstruction is described. The scheme is applied to three benchmark problems and is found to be considerably more accurate than a similar scheme based on piecewise constant reconstruction.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2006.01.031</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2006-09, Vol.217 (2), p.277-294
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_miscellaneous_29615006
source Elsevier ScienceDirect Journals Complete
subjects Benchmarking
Compressible flow
Computation
Computational techniques
Euler equations
Exact sciences and technology
Finite volume method
Mach-uniform
Mathematical analysis
Mathematical methods in physics
Physics
Reconstruction
Ringleb
Staggered unstructured grid
Unsteady
title A superlinearly convergent Mach-uniform finite volume method for the Euler equations on staggered unstructured grids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A45%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20superlinearly%20convergent%20Mach-uniform%20finite%20volume%20method%20for%20the%20Euler%20equations%20on%20staggered%20unstructured%20grids&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Vidovi%C4%87,%20D.&rft.date=2006-09-01&rft.volume=217&rft.issue=2&rft.spage=277&rft.epage=294&rft.pages=277-294&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2006.01.031&rft_dat=%3Cproquest_cross%3E1082185448%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082185448&rft_id=info:pmid/&rft_els_id=S0021999106000301&rfr_iscdi=true